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Wave equations in mechanics
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Abstract. The classical wave equation is a cornerstone in mathematical physics and mechanics.
Its modifications are widely used in order to describe wave phenomena. In mechanics
deformation waves are related to impact problems, acoustic waves are used in Nondestructive
Evaluation, seismic waves may cause a lot of damage, etc. In this paper it is shown how the
classical wave equation can be modified in order to model better the physics of processes.
The examples cover microstructured and inhomogeneous materials together with linear and
nonlinear models. Beside usual two-wave models, the evolution equations are described which
govern the distortion of a single wave.
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1. INTRODUCTION

The cornerstones of classical mathematical physics are hyperbolic, parabolic
and elliptic one-dimensional equations. Here we focus on one of them – the hyper-
bolic one which is called wave equation. From one side, the wave equation is one of
17 equations “that changed the world” [1], from the other side, it has an important
role to play in mechanics. Indeed, mathematical description of wave phenomena
is one of the fundamentals not only in mechanics but also in many other areas
of physics. The history of the wave equation is related to such names as Jean
d’Alembert, Leonhard Euler, Daniel Bernoulli, Luigi Lagrange and Joseph Fourier.
The debate on proper solution of the wave equation between d’Alembert, Euler
and Bernoulli during the 18th century has formulated the basics of the analysis and
gave impetus to further studies [2]. “We live in a world of waves”, said Stewart [1].
Sound waves, seismic waves, electromagnetic waves, etc. are known and studied
intensively because they are around us, we can use them and sometimes we want to
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avoid them because they can be dangerous. In mechanics, we speak about deforma-
tion waves if we are interested in displacements and deformations, and about stress
waves if we are interested in stresses. In terms of displacement u, the wave equation
reads:

∂2u

∂t2
= c2

0

∂2u

∂x2
, (1)

where x, t are space and time coordinates and c0 – the velocity of the wave (a
constant). In three-dimensional setting in coordinates x, y, z the wave equation is

∂2u

∂t2
= c2

0

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (2)

Much is written about solving these equations in textbooks or monographs (see,
for example, [3]). In a nutshell, the wave equation (1) describes the propagation of
an excitation generated by initial or boundary condition with a constant speed c0.
There is no dissipation (which can not be realistic) and there are no constraints
in time and space (which also cannot be realistic). Clearly, for most cases the
wave equations must be modified to meet realistic conditions, but the essence of
the model must be kept. The reason is simple: the wave equation emphasizes the
Newton 2nd Law in continua and is the simplest version of balance of momentum
involving kinetic and potential energies.

This paper gives a brief overview about modified wave equations, which
are derived for bringing the models closer to reality. Without any doubt, such
models are extremely important in engineering and acoustics for the analysis of
dynamical phenomena like vibrations, impact processes, non-destructive testing,
etc. Section 2 gives a brief overview on the physics of waves. Next sections are
devoted to the description of mathematical models. In Section 3 the modifications
of a classical wave equation are described, in Section 4 – the corresponding
evolution equation is presented. Section 5 gives a brief summary of the importance
of presented models.

2. PRELIMINARIES ON WAVES

There is no simple definition of a wave because of its many facets. Neverthe-
less, the following two definitions give a more or less clear picture. Truesdell
and Noll [4] have said: wave is a state moving into another state with a finite
velocity. One can also say [5]: wave is a disturbance, which propagates from
one point in a medium to other points without giving the medium as a whole any
permanent displacement. Following these definitions, it is clear that a wave should
overcome the resistance of a medium to deformation and the resistance to motion.
Consequently, waves can occur in media in which energy can be stored in both
kinetic and potential form.
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If in the simplest one-dimensional case we calculate kinetic energy K and
potential energy W from

K =
1
2
ρu2

t , W =
1
2
(λ + 2µ)u2

x, (3)

where ρ is the density; λ, µ are Lamé parameters and indices here and further
denote differentiation with respect to variables x, t, then the wave equation (1) can
be derived from Euler-Lagrange equations:

ρutt = (λ + 2µ)uxx. (4)

Here the left-hand side stems from the given kinetic energy resulting in acceleration
and the right-hand side – from the given potential energy resulting in a force. It is
easily seen that the velocity of the wave c0 obeys the condition c2

0 = (λ + 2µ)/ρ.
The theory of deformation waves in solids was developed during the 19th

century by Cauchy, Poisson, Lamé a.o. More recently, overviews on wave motion
in solids were presented by Kolsky [6], Achenbach [7], Bland [8], Graff [9] a.o.
(see also references to classical works therein). Note also an informative table on
historical milestones in research into wave motion given by Graff [9].

In what follows we are interested in longitudinal waves, i.e. the particle motion
is along the direction of propagation. The menagerie of waves includes also trans-
verse waves, surface waves a.o. A brief summary of the types of waves is given by
Engelbrecht [5].

The classical wave equation (1) has a closed solution (see [9]) for given initial
conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x). (5)

Indeed, after introducing new variables

ξ = x + c0t, η = x− c0t, (6)

equations (1) yield
uξη = 0, (7)

which is solvable by direct integration. The final solution is named after
d’Alembert:

u(x, t) =
1
2
(
ϕ(x + c0t) + ϕ(x− c0t)

)
+

1
2c0

x+c0t∫

x−c0t

ψ(α)dα. (8)

This solution shows explicitly waves propagating in two directions – to the left
and to the right, which gives an idea to further factorization of the wave equation
(see Section 4). Such an approach means replacing the wave equation (two-wave
equation) by the corresponding one-wave equations, which are called evolution
equations. For the classical wave equation such a replacement gives no advantage
but for modified wave equations the evolution equations are widely used. The
asymptotic techniques for constructing the evolution equations are well elaborated,
especially for nonlinear waves [10,11].
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3. MODIFIED WAVE EQUATIONS

The classical wave equation (1) (or as derived for solid mechanics – Eq. (4))
is certainly a simplification. It is linear because the disturbances are assumed
to be small. Next, the medium is assumed to the homogeneous that is again a
simplified assumption. In what follows, the description of modified wave equations
follows. In order to be more definite, we limit ourselves mostly with elastic models,
leaving dissipative effects aside. This means that the models are conservative and
the attention is to nonlinear and dispersive effects. However, the modifications
involving relaxation effects consider also dissipation. More on dissipative models
can be found in [11].

First, we start with nonlinear models. The description of possible nonlinear
effects in solids is given by Engelbrecht [5]. By taking geometrical (nonlinearity of
the deformation tensor) and physical (nonlinearity of the stress–strain relation), the
wave equation yields

ρutt = (λ + 2µ)
[
1 + 3(1 + m0)ux

]
uxx, (9)

where following the Murnaghan model

m0 = 2(ν1 + ν2 + ν3)
/
(λ + 2µ). (10)

Here ν1, ν2, ν3 are Murnaghan constants (higher-order elastic constants) corres-
ponding to cubic terms in the potential energy W . In (9) the term 1+m0 shows the
influence of geometrical and physical nonlinearities (1 vs m0). While for metals
|m0| ∼ 10 [12] then the influence of physical nonlinearity is decisive for wave
propagation. According to (1), the wave speed c is calculated from:

c2 = c2
0

[
1 + 3(1 + m0)ux

]
, (11)

which means that the speed depends upon deformation ux. Consequently, under
proper smooth initial/boundary conditions shock waves can emerge in the course
of propagation [13]. Even if an initial excitation is a harmonic wave with a single
frequency, in the course of propagation higher harmonics will be generated result-
ing in a shock wave which in mathematical terms is a singularity. Definitely, super-
position is not possible in nonlinear systems.

Second, the solids at a smaller scale are heterogeneous because of their micro-
structure. There exist several theories of microstructured continua [14,15] and the
corresponding mathematical models are characterized by the appearance of higher-
order derivatives. The modified wave equation, for example, is presented and
analysed by Engelbrecht et al. [16] and Berezovski et al. [17]. It reads:

utt = (c2
0 − c2

A)uxx − p2(utt − c2
0uxx)tt + p2c2

1(utt − c2
0uxx)xx, (12)

where cA, c1 are speeds characterizing elasticity of the microstructure and p is a
coefficient characterizing microinertia.
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After asymptotic simplification, Eq. (12) is transformed to

utt = (c2
0 − c2

A)uxx + p2c2
A(utt − c2

1uxx)xx. (13)

Both Eq. (12) and Eq. (13) consist of the fourth-order terms characterizing
dispersive effects. Their influence can be seen in wave profiles and phase and group
speeds [17] as expected in dispersive systems.

Third, the nonlinear and dispersive effects, taken into account simultaneously,
lead to the Boussinesq-type models, originally derived for water waves. In solids,
such models are described by Christov et al. [18] and Engelbrecht et al. [19]. The
Boussinesq paradigm grasps the following effects: (i) bi-directionality of waves;
(ii) nonlinearity, which can be of any order; (iii) dispersion, modelled by space
and time derivatives of the fourth order at least. If we now unite the models (9)
and (13) derived for microstructured solids then the result yields (for details, see
Engelbrecht et al. [19]):

utt = (c2
0 − c2

A)uxx +
1
2
µ(u2

x) + p2c2
A(utt − c2

1uxx)xx +
1
2
δ3/2κ(u2

xx)xx, (14)

where µ and κ are nonlinear parameters and δ = l20/L2
0 a small parameter, which

determines the ratio of characteristic length l0 of the microstructure and wavelength
L0 of the excitation.

In Eq. (14) both nonlinearities – that of the macrostructure and microstructure
are taken into account (terms with coefficients µ and κ, respectively).

Fourth, the inhomogeneity of the material leads to a wave equation with space-
dependent coefficients. Such a model is derived by Ravasoo [20] for solving
the material characterization in nondestructive evaluation. In this case, all the
coefficients of (9) are functions of x: ρ(x), λ(x), µ(x), κi(x), i = 1, 2, 3. Then
the final wave equation reads:

ρ(x)utt =
[
λ(x) + 2µ(x)

](
1 + k1(x)µx

)
uxx + k2(x)ux + k3(x)(ux)2. (15)

Denoting

α(x) = λ(x) + 2µ(x); β(x) = 2
(
ν1(x) + ν2(x) + ν3(x)

)
, (16)

the other coefficients are:

k1 = 3
[
1 + β(x)

/
α(x)

]
, (17)

k2 = αx(x)
/
α(x), (18)

k3 =
3
2
[
αx(x) + βx(x)

]/
α(x). (19)

Although Eq. (15) is pretty complicated, it is possible to solve it by perturbation
techniques provided the space-dependence is weak [21].
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Fifth, in order to model relaxation and/or hereditary effects, the constitutive
equations (stress-strain relations) are taken in an integral form [22]. In this case
the attention is to nonlocal effects [23] which are modelled by convolution integrals
with certain kernel functions. Usually such models are used to describe dissipative
effects but actually the summary effects are related also to wave speeds. That
is why we present here also an integro-differential wave equation. In case of an
exponential kernel function, the linear wave equation reads [11]:

ρutt = (λ + 2µ)uxx + ε1 (λ + 2µ)




t∫

0

(ux)τ exp
(
− t− τ

τ0

)
dτ




x

, (20)

or

ρutt = (λ + 2µ)(1 + ε1)uxx − ε1 (λ + 2µ)
/
τ0




t∫

0

ux exp
(
− t− τ

τ0

)
dτ




x

. (21)

Two new coefficients are here introduced: ε1 > 0 is a dimensionless constant and
τ0 – the relaxation time. From (20) and (21) two speeds can be determined: the
equilibrium speed ce and the instantaneous speed ci:

c2
e = (λ + 2µ)

/
ρ0, c2

i = (1 + ε1)(λ + 2µ)
/
ρ0. (22)

The slow processes propagate with speed ce, the fast processes – with speed ci [22].
This is an extremely important phenomenon in wave motion which demonstrates
the possible dependence of wave characteristics on excitation properties. The
possible nonlinear modifications of Eqs (20) and (21) are given by Engelbrecht [11].
The kernel of the convolution integral in Eqs (20) and (21) corresponds to the
standard viscoelastic model [22], which models both dispersion and relaxation
effects.

4. ONE-WAVE EQUATIONS

The wave equation (1) or its modifications describe two waves. The widely
developed understanding in contemporary wave theory is related to the separation
of a multi-wave process into separate waves. Then these single waves are governed
by their own governing equations called evolution equations [10]. Although the
most celebrated evolution equation named after Korteweg and de Vries was known
much earlier, the systematic studies on derivation of such equations started in 70’ies
last century.

The idea is as follows. The classical wave equation has solution in terms of
variables ξ = x + c0t, η = x − c0t and waves move without any distortion.
Either ξ or η is then chosen as a basic independent variable also for modified wave

278



equations (Section 3). A set of small parameters in then chosen which characterizes
the strength of additional terms together with stretched independent variables and
the perturbation method is applied [10,11].

For example, one can propose new variables

ξ = c0t− x, τ = εx, (23)

where ε is a small parameter, and introduce series interpretation for dependent
variables and coefficients. Note that new independent variables represent a moving
frame: we move with a speed c0 and the distortions of the wave profile are supposed
to be slow. The sign convention in (23) says that the positive direction is from the
wavefront backwards, i.e. into the waveprofile. Omitting the details [5,10,11], the
classical wave equation (1) in new variables (23) is simply

vτ = 0, (24)

where v = ut (or v = −uxc0). This equation reflects exactly the simplicity of
the wave equation. The situation becomes much more complicated for modified
wave equations. From nonlinear Eq. (9), the following evolution equation can be
derived [11]:

vτ + n1vvξ = 0, (25)

n1 =
3
2
(1 + m0)

/
εc0. (26)

Equation (25) is the equation of simple waves [24], which like Eq. (9) leads to shock
waves.

From the original Boussinesq equation the famous Korteweg–de Vries (KdV)
equation follows. Leaving aside the details how original variables are transformed
to variables used throughout this paper, the KdV equation is

vτ + n2vvξ + dvξξξ = 0, (27)

where n2 and d are constants. The same KdV equation was derived by Zabusky
and Kruskal [25] for waves in a chain of particles.

The canonical form of this equation after Newell [26] is

qτ + 6qqξ + qξξξ = 0. (28)

From (14), however, the following KdV-type equation can be derived [27]

vτ + n3(v2)ξ + (1− γ2
1)vξξξ + n4(v2

ξ )ξξ = 0. (29)

Here γ2
1 = c2

1/c2
0, the terms with n3 and n4 emphasize the influence of macro-

nonlinearity and micro-nonlinearity, respectively. What should be stressed here
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is the sign of the dispersive term: (1 − γ2
1)vξξξ. While in (14) the effects of

microinertia and elasticity of the microstructure are controlled by different terms
then in (29) there is only one term and the full description of dispersion is lost.
Indeed, depending on either γ2

1 > 1 or γ2
1 < 1, the dispersion curve is concave

or convex, respectively. However, the one-wave equation (29) is of the KdV-type
and therefore demonstrates explicity the balance of dispersive and nonlinear terms
needed for the existence of solitons. The counterpart to Eq. (28) is now

qτ + 3(q2)ξ + qξξξ + 3ε(q2
ξ )ξξ = 0. (30)

In case of the integro-differential models (20) and (21), the moving frame
should be selected either in terms of the equilibrium velocity ce or the instantaneous
velocity ci:

ξe = cet− x, ξi = cit− x. (31)

Then, for example from Eq. (20), the following evolution equation can be
derived [5]:

vτ − Ξe




ξe∫

0

vz exp
(
−ξe − z

Ze

)
dz




ξe

= 0. (32)

Its nonlinear counterpart reads

vτ + sign(1 + m0)vvξe − Ξe




ξe∫

0

vz exp
(
−ξe − z

Ze

)
dz




ξe

= 0. (33)

Here Ξe and Ze are dimensionless parameters reflecting the properties of the
medium and govern the dispersion of waves. Both Eqs (32) and (33) are special
cases for hyperbolic waves analysed by Whitham [24]. In case of model (33),
various simplifications are possible for large or small parameters Ξe and Ze, which
can be used to model low frequency (Ze ¿ 1) or high-frequency (Ze À 1)
processes [11].

5. FINAL REMARKS

Even the brief overview on possibilities to enlarge the classical wave equation
in order to come closer to reality demonstrates the fundamental importance of
the ideas embedded into the wave equation. As a direct consequence of the 2nd
Newton’s Law it is based on the kinetic and potential energies of the system. The
cases shown above focus on the theory of elasticity and involve microstructured and
inhomogeneous materials together with linear and nonlinear models. An example

280



of a integro-differential model shows how the dispersive effects are linked to the
relaxation process. The wave equation (1) itself is a two-wave equation and one
possible simplification is to separate a multiwave processes into single waves
which brings in the evolution equations. These one-wave equations describe the
distortion of a single wave along a properly chosen characteristics, determined by
the velocity c0. Evolution equations form nowadays an important chapter not only
in mechanics but also in many other areas of physics, especially when nonlinearities
are included [28].

Theoretical modelling should always be verified by experiments. The wave
equations and the corresponding evolution equations have stood all the verification.
Here we note just one simple example related to the dynamics of the string [29].
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Lainevõrrandid mehaanikas
Jüri Engelbrecht

Klassikaline lainevõrrand on üks matemaatilise füüsika põhivõrranditest. Selle
võrrandi lihtsusest ja elegantsusest hoolimata on paljude mehaanikaprobleemide
analüüsiks vaja kasutada lainevõrrandi modifikatsioone, et paremini kirjeldada
füüsikalisi efekte laineleviprotsessides. Vajadus on eriti ilmne lainelevi modellee-
rimisel heterogeensetes materjalides, kus materjali sisestruktuuril on oluline osa.
Ühemõõtmeline lainevõrrand ise ja selle modifikatsioonid kirjeldavad kaht lainet,
kuid tihti on kasutusel ka nendest tuletatud nn ühe laine evolutsioonivõrrandid.
Artiklis on toodud näiteid modifitseeritud lainevõrranditest ja nendele vastavatest
evolutsioonivõrranditest. On rõhutatud vajadust arvestada dispersiooni ja materjali
mittelineaarsusega.
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