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Abstract. The present paper is devoted to the problem of measuring and modelling the
changes in human motor functions. Nowadays, overwhelming majority of techniques for
motion analysis and gesture recognition are based on feature extraction, pattern recognition
and clustering. An alternative approach to measure and model changes in motor functions is
proposed. Unlike feature extraction or pattern recognition techniques, the proposed approach
concentrates its attention on the total quantity and smoothness of the human limb movements.
The latter constitutes the main distinctive feature of the proposed technique. When changes of
human motor functions are caused by learning of a new motor activity, amount and smoothness
of the movements may provide necessary information to measure the effectiveness of the
training technique. The notion “motion mass” is introduced as a measure associated with the
motion, which describes how much and how smoothly certain joints have moved. Practical
example of learning the ball throwing is used to demonstrate the ability of the proposed
approach to measure the changes in motor functions and distinguish their performance on
different stages of the learning process.
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1. INTRODUCTION

The present paper is devoted to the problem of measuring and modelling
changes in the human motor functions, during learning new motor activities.
Nowadays majority of the results achieved in human motion analysis and gesture
recognition is focused on extracting and analysing certain features of the motion [1].
While feature extraction and pattern recognition techniques give precise and robust
results, they do not always answer all the needs of academic research. To the
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best knowledge of the authors, there is no commonly used and widely accepted
technique to measure the state of the human movement patterns. This leads to the
main goal of the present contribution, namely, to measure numerically the state of
the human motor functions. Ability to measure state of the human motor functions
would allow to apply a rich variety of mathematical methods to model the learning
process which in turn will provide novel opportunities for the computer aided
training. For this purpose the notion “motion mass” is introduced. It describes
the amount and smoothness of the human limb movements during a certain period
of time.

The paper is organized as follows. The process of new motor activity planning
is described in Section 2. The notion “motion mass” is formally introduced in
Section 3. Application of the motion mass parameters to describe and model
the changes in motor functions are explained in Section 4. Advantages and dis-
advantages of the proposed approach are discussed in Section 5. Conclusions and
future plans are outlined in the last section.

2. LEARNING OF A NEW MOTOR ACTIVITY

In order to avoid any confusion caused by the terminology, within the frame-
works of the present contribution we use the following terms: movement is any
internally generated change in the physical position of the skeletal body parts in
relation to one another; motion is a set of movements and action is a purposeful
set of movements or motions. The process of learning a new motor activity or
optimizing the known one may be seen as a sequence of trials, where each trial is
an action aiming to achieve a certain goal. Each action may be a solitary attempt
to achieve something, or may have a more complicated structure; for example,
sportive training sessions consist of different exercises. From the physiological
point of view each action may be seen as a behavioural act. According to Russian
neurophysiologist Piotr Anokhin’s well-grounded theory [2,3] (see also [4] for a
review) every behavioural act of living organisms is based on a ‘functional system’,
which universal structure includes the following components: afferent synthesis
(planning of the action), decision making (which includes the formation of two
complementary dynamic structures, action program and acceptor of the result),
back-afferentation and acceptance of the results (analysis of the achieved results).
Comparison of the desired result to the achieved one allows making a decision
about the necessity to continue learning and provides feedback for the afferent
synthesis of the next step. On the stage of afferent synthesis, the learning individual
decides what to do, how to do, and when to do [2−4]. Answering these questions is
equivalent to making a choice from all possible options. Creation and adjusting of
motor programs is foremost performed by the individual; occasionally supervisors
may support this process by proposing modifications of the performed actions.
Results of the action may be either changes of the environment or changes in the
organism itself. While changes in the environment are usually easy to observe
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and describe, changes in the organism itself are not so obvious, especially in the
unsupervised case. Also description of such changes may be highly subjective.
Learning of a motor activity is either an aim by itself (e.g., in case of learning
to dance) or is aimed at achieving certain changes in the environment (e.g.,
learning to use tools). In both cases in the process of learning the movements that
comprise the action change; usually the trajectories of motions become smoother
and more precise. The working hypothesis of the authors is that the state of the
motor functions may be related to the progress of achieving the goal of learning.
This leads to the idea to measure the state or condition of the motor functions
numerically. On the one hand, such measure will provide objective measurement
of the changes in the functioning of the organism (changes of motor functions
in our case), which may be used in back-afferentation, and, on the other hand,
will allow mapping the processes of motor functions learning for further academic
research. Another important point to consider is that final configuration of motor
functions is unknown in the beginning of the learning process. Therefore there is
no standard to compare and measure the difference between the current state of
the motor functions and the goal. Even in such well-studied activities like playing
golf or tennis, one may obtain very precise instructions about positions and the
motions of the limbs, but final state of the motor functions still will be unique for
each individual. In this context, observing numeric changes in motor functions
may provide one with the ability to detect changes or lack of them in the course of
training or practice of moment patterns.

Let us consider the process of learning the ball throwing into the basket. While
this activity may seem quite simple on the first view, the size and the distance to
the basket may be chosen in such a way that getting the ball into the basket may
require certain amount of practice. Such practice is the optimization of the motor
activity. In our study, it was performed in the form of exercises whereas each
exercise consisted of ten trials (ball throwing). Preparation for the ball throwing
in this case is the afferent synthesis, decision to throw the ball is made once the
individual is ready. Immediately after the throwing, information about the result
of the action becomes available for the back-afferentation and acceptance of the
results. In this experiment, results of the action are expressed numerically, number
of the balls got to the basket. This allows using formal methods to check if the
progress in achieving the goal of the training is related to the state of the motor
functions. The only missing part now is the numerical description of the state of
motor functions.

Anyone who has experienced learning new motor activities remembers that in
the beginning the movements of the limbs are quite awkward and not very smooth,
but during the practice they become smooth and adroit. Intuitively, awkwardness of
the motions corresponds to the unnecessary or insufficient limb movements. This
leads to two main properties of the motion the desired measure should describe,
namely the amount and smoothness of the performed movements. During the
learning process the amount of unnecessary movements decreases, which leads
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to the convergence to some optimal quantity of movements. Amount of the
movements may be described by the trajectory lengths of the joints participating in
the motion. At the same time, as learning progresses, the action program becomes
more precise. This decreases the necessity to adjust movements during the motion
which in turn leads to less accelerations to be performed. Therefore, the amount
of the accelerations to be performed during the motion may be used to describe
smoothness of the motion.

3. “MASS” AND SMOOTHNESS OF THE MOTION

Let us now formalize the idea of the amount and smoothness of the movement.
Define motion as the most primitive (indivisible) movement of the limb or group
of the joints. Let J = {j1, j2, . . . , jn} be the set of the joints of interest. For each
motion one may precisely measure the beginning and ending times, and associate
positions of each joint to the beginning and ending time moments. Let t denote
the length of the motion in time. Define combined Euclidean distance of the set J
as the sum of the Euclidean distances of each joint associated with the motion of
interest:

EJ =
n∑

i=1

Eji , (1)

where Eji denotes the Euclidean distance between the starting and ending positions
of the joint ji. By analogy, denote by Tji the length of the trajectory of the joint
ji, observed during the motion. Define trajectory mass as the sum of the trajectory
lengths computed of each joint of the set J :

TJ =
n∑

i=1

Tji . (2)

As a final step, let us define the acceleration mass in the following way.
Associate to each joint the sequence of accelerations computed for each pair of
the consequent time moments (while the motion took place). Find the sum of the
absolute values of each element of the sequence and denote it as Aji . Define the
acceleration mass of the set J as

AJ =
n∑

i=1

Aji . (3)

Trajectory mass describes total amount of performed movements and
acceleration mass describes smoothness. Combined with the length of the motion
in time, trajectory mass and acceleration mass are the three numerical parameters
allowing to compare motions on different stages of the learning process. Main
drawback of the trajectory mass and acceleration mass is that they depend on
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the physiological constitution of the particular individual. Those with the longer
limbs would have larger values of the trajectory and acceleration mass. In order
to provide possibility to compare motion masses of different individuals, two
following parameters are proposed: the ratio of the combined Euclidean distance
and the trajectory mass

Rd =
EJ

TJ
, (4)

and the ratio between the combined Euclidean distance and the acceleration mass

Ra =
EJ

AJ
. (5)

While both parameters Rd and Ra are necessary to compare motions performed
by different individuals, it is enough to know the values of the trajectory mass,
acceleration mass and combined Euclidean distance to compute them. Let us now
define motion mass as the set of the following four parameters: trajectory mass,
acceleration mass, combined Euclidean distance and the motion length in time.
Denote the motion mass associated with the joints set J as MJ :

MJ =
{
TJ , AJ , EJ , t

}
. (6)

The elements of the motion mass describe the amount and smoothness of the
movements associated with certain motion.

4. PRACTICAL APPLICATION

In order to demonstrate abilities of the motion mass to describe learning of new
motor activities let us return to the example of ball throwing into the basket. There
are two important components to consider: the data acquisition process and the
analysis of the motion mass parameters.

4.1. Data acquisition

Motion capture was performed by the Microsoft
TM

Kinect
TM

sensor, connected
to a PC. While initially Kinect was designed as a motion capture device for the
gaming console, during recent years it has quickly gained popularity not only in the
area of human–machine interaction [5] but has also found its way to such a delicate
area as medicine. In spite of its simplicity it provides quality, which under certain
conditions is in pair with more advanced motion capture systems [6], allowing to
use the sensor in physical rehabilitation [7] and computer-aided surgery [8].

Control of the Kinect sensor, data acquisition and storage were performed by
means of a specially developed application. This application allows to read the
data from the sensor, mark the beginning and the ending times for each motion of
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Fig. 1. Postures of ball throwing.

interest and store the data for further analysis. Kinect returns three-dimensional
coordinates of 19 body joints and the head, with a sampling time of 1/30 s. Within
the framework of the present research, MATLAB

TM
was used to analyse the data

and perform all necessary computations. Kinect generated schematic diagram of
the human skeleton is presented in Fig. 1, where the first two diagrams depict front
and side views of the initial posture and the second two – the posture corresponding
to the moment of ball throwing.

4.2. Analysis of the experimental data

Totally 20 sessions were performed, whereas each session consisted of 10
trials. The set of joints J included: left shoulder, shoulder centre, right shoulder,
right elbow, right wrist and right hand. Selection of the joints was based on the
observations, which indicated which joints moved during ball throwing. For each
motion of throwing motion mass parameters were computed. Let us first compose
the sequence of successful trials only. Changes in the trajectory mass, acceleration
mass and time for the successful trials are depicted in Fig. 2.

In Fig. 2, axis x correspond to the overall number of successful attempts, and
plots of the trajectory mass, acceleration mass, combined Euclidean distance and
length of the motion in time are shown. Unlike to the same motion mass parameters
computed for the failed trials (Fig. 3), parameters computed for the successful trials
tend to change more during the learning process.

In order to confirm visual observations, statistical hypotheses will be used. Let
A be a random sample of 30 successful trials from the beginning of the training
and B be the same size random sample of successful trials form the last part of the
training. To each sample one may associate five vectors, corresponding to the
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Fig. 2. Evolution of the motion mass parameters of successful trials.

Fig. 3. Evolution of the motion mass parameters for the unsuccessful trials.
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motion mass parameters, the vector of trajectory masses, the vector of acceleration
masses, etc. Now for each pair of vectors, state the pair of hypotheses (H0,Ha)
such that the null hypothesis (H0) states that data in the vectors, corresponding to
the samples A and B are independent random samples from normal distributions
with equal means and equal but unknown variances, against the alternative (Ha)
that the means are not equal. Test results for the level of significance α = 0.05 are
presented in Table 1.

In Table 1, value 1 indicates rejection of the null hypothesis at given signifi-
cance level, and 0 indicates failure to reject the null hypothesis. Notation 0/1
indicates that for some individuals mean values were different and for some not.
Test results clearly demonstrate that the motion mass parameters for the successful
trials differ between the beginning and the ending parts of the learning process.
The same parameters, computed for the unsuccessful trials, do not differ signifi-
cantly during the learning (see the last column of Table 1). The p- and t-values,
corresponding to the test results for one particular individual, are presented in
Tables 2 and 3, respectively.

Table 1. Differences of the motion mass parameters in the beginning and in the ending of the
motor activity learning

Parameter Successful trials Unsuccessful trials

Trajectory mass TJ 1 0
Acceleration mass AJ 0/1 0
Combined Euclidean distance EJ 1 0/1
Motion length in time t 1 0/1

Table 2. p-values, corresponding to the hypothesis testing results for one particular individual

Parameter Successful trials Unsuccessful trials

Trajectory mass TJ <0.0001 0.1342
Acceleration mass AJ 0.0950 0.0776
Combined Euclidean distance EJ 0.0172 0.5656
Motion length in time t <0.0001 <0.0001

Table 3. t-values, corresponding to the p-values reported in Table 2

Parameter Successful trials Unsuccessful trials

Trajectory mass TJ 4.1789 1.5189
Acceleration mass AJ 1.6972 1.7966
Combined Euclidean distance EJ –2.4539 0.5779
Motion length in time t 4.8292 4.5755
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The proposed technique was validated on the data, describing learning of the
same motor activity, of two more individuals. Obtained results do not differ much
from those, presented in Tables 2 and 3, and are therefore omitted here.

5. DISCUSSION

To a certain extent the proposed approach may seem similar to the notion
“motion region” proposed to estimate “quantity of motion” in [9]. While certain
similarity undoubtedly exists, the method proposed in the present contribution
allows greater freedom of customization, which makes it better suited for the
studies of the motor activity learning.

Up to now the question of motion mass units was left undiscussed. While
the trajectory mass and the combined Euclidean distance, if necessary, may be
expressed in any standard units of international or imperial measurement systems,
this is not the case for the acceleration mass. At the present time motion mass
parameters are meant to be compared only to their own values at different time
moments or between different individuals. Thus there is no necessity to relate those
parameters to any other measures. Let us now consider the values of the motion
mass parameters as unitless abstract measures (of course, except the motion length
in time, which inherits its normal measuring units). Most probably, in the course of
future research, relation of the motion mass to other measures will be established
which will allow to establish a justified system of units.

Another important point to discuss here is the choice of the elements of the
motion mass. While the original idea in [10] was to define motion mass as a set
of five parameters: trajectory mass, acceleration mass, ratio Rd, ratio Ra and the
motion length in time, our study has demonstrated that the definition, proposed in
this paper, is less complex and is better suited for the result interpretation. Also
motion mass, defined by Eq. (6), contains all the parameters necessary to compute
the ratios Rd and Ra.

As a final note let us briefly discuss the possibility of the proposed approach
to be applied in medicine. In those cases where treatment relays on the
physical exercises (for example motor functions rehabilitation or treatment of the
Parkinson’s disease), ability to measure state of the motor functions may provide
objective information about progress of the rehabilitation or effectiveness of the
treatment.

6. CONCLUSIONS

The notion motion mass was introduced in this paper to describe the state of the
human motor functions in the context of learning a new motor activity. The main
distinctive feature of the proposed approach is that certain numeric measures are
associated with the entire motion, performed by the limb or group of the limbs, and
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not only with a particular property of the motion. Such numeric measures allow
to apply mathematical methods to determine if the state of the human movement
patterns is changing from one experiment to another, determine the values of
absolute and relative changes and prove convergence of the process. For example
the well-known Timed-Up-and-Go test [11,12], in which time needed to perform a
certain set of actions is measured, does not describe quantity and the smoothness
of the movements. The method we propose allows to record considerably more
information about motor functions. For instance, different disorders of motor
functions, such as standing up, walking, turning, etc., may look similar if the
measures of them are time to perform an act and/or distances passed. Yet the
same slow performance of a set of actions may result from opposite kinds of motor
disorders. In one case the movements might be small and slow. In another case, on
the contrary, due to involuntary movements, the movements might be large and fast
but inefficient. In the first situation the motion mass, we measure would be small
and in the latter case big even when the time used to perform the task or distance
passed had been the same. Learning process of ball throwing into the basket was
used to demonstrate the ability of the proposed technique. Future research will be
concentrated on practical applications of the proposed technique in different areas
of psychology and medicine.
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Alternatiivne meetod jäsemete liigutuste hulga
ja sujuvuse mõõtmiseks

Sven Nõmm ja Aaro Toomela

On käsitletud inimese motoorikas õppimise käigus toimuvate muudatuste
mõõtmist ja kirjeldamist. Tänapäeval põhineb valdav enamik liigutuste analüüsi ja
žestide tuvastamise meetodeid liigutustunnuste eristamisel, liigutusmustrite tuvas-
tamisel ning klasterdamisel. On esitatud uudne liigutuste kirjeldamise meetod,
mis erinevalt senikasutatutest kirjeldab jäsemete liigutuste hulka ja sujuvust.
Arvuliselt mõõdetava näitajana on kasutatud liigutuste massi (motion mass), mis
kirjeldab kindla liigutuste tsükli käigus tehtud liigutuste hulka eukleidilises ruumis.
Esitatud meetodi võimalusi on demonstreeritud sihtmärgi pihta palli viskamise
õppimise näitel. Nii teoreetilised kaalutlused kui ka empiirilised andmed osutavad,
et uudne meetod võib olla laialt rakendatav erinevate liigutuste õppimisel, seal-
hulgas sportlaste treenimisel ja ajukahjustuse läbi teinud inimeste motoorsete või-
mete rehabilitatsioonis.
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