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Abstract. The properties and dynamics of internal waves in the ocean crucially depend on the vertical structure of water masses. 
We present detailed analysis of the impact of spatial and seasonal variations in the density-driven stratification in the Sea of 
Okhotsk on the properties of the classic kinematic and nonlinear parameters of internal waves in this water body. The resulting 
maps of the phase speed of long internal waves and coefficients at various terms of the underlying Gardner’s equation make it 
possible to rapidly determine the main properties of internal solitary waves in the region and to choose an adequate set of 
parameters of the relevant numerical models. It is shown that the phase speed of long internal waves almost does not depend on 
the particular season. The coefficient at the quadratic term of the underlying evolution equation is predominantly negative in 
summer and winter and therefore internal solitons usually have negative polarity. Numerical simulations of the formation of 
internal solitons and solibores indicate that seasonal variations in the coefficient at the cubic term of Gardner’s equation lead to 
substantial variations in the shape of solibores. 
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INTRODUCTION 

Internal waves are an intrinsic constituent of dynamics 
of all stratified water bodies, having a particular role 
in the functioning of the entire ecosystem of seas and 
oceans. They provide massive transport of energy over 
large distances from their generation region to remote 
and partially sheltered areas under favourable conditions. 
Locally, they substantially contribute to the mixing of 
water masses and resuspension and transport of bottom 
sediment (Stastna & Lamb 2008; Reeder et al. 2011; 
Bourgault et al. 2014). In this way internal waves greatly 
impact the distribution of nutrients, often markedly 
relocate patches of plankton in the water column and 
thus play a crucial role in the formation of the biological 
productivity of seas and oceans (Vázquez et al. 2009; 
Pan et al. 2012). 

The propagation and breaking of internal waves is 
often associated with the excitation of strong currents 
that serve as a major danger to deep-water engineering 
structures (Osborne 2010; Song et al. 2011; Stober & 

Moum 2011). The presence of internal waves modifies 
the local field of water density and thus impacts the 
propagation regimes of acoustic waves through the 
water masses (Warn-Varnas et al. 2009; Rutenko 2010). 

The main source of energy of internal waves in the 
open ocean and in most of shelf seas is the tidal motion. 
The parameters of internal waves generated, for example, 
via the interaction of a tidal wave and bathymetry sub-
stantially depend on the vertical structure of water density 
(local stratification) and the properties of currents in the 
wave generation and propagation area. While the field 
of currents often varies rapidly, changes in the stratifi-
cation are usually slow but often extensive on a seasonal 
scale (Holloway et al. 1997). The intricacy of the entire 
phenomenon of internal waves and complexity of their 
generation and impact have initiated many studies into 
their dynamics. These studies are largely targeted to the 
understanding of this phenomenon in shelf seas that 
have large resources of oil and gas such as the South 
China Sea (Ramp et al. 2010; Liu et al. 2013; Alford et 
al. 2015; Xu et al. 2016). 
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The options of analytical studies of internal waves 
are limited and the use of the relevant exact solutions 
for practical purposes is fairly complicated. For this 
reason the use of numerical simulations of different 
properties of internal waves (e.g., the evaluation of 
velocities of water parcels excited by the internal wave 
motion and associated impact on the underwater parts of 
engineering structures) is rapidly increasing (Kurkina & 
Talipova 2011; Si et al. 2012; Vlasenko & Stashchuk 
2015; Kurkina et al. 2016). Such simulations of internal 
waves of the lowest mode often rely on the classic 
weakly nonlinear models of the family of Korteweg–
de Vries equations. A natural extension of this family 
towards taking into account the impact of spatially 
inhomogeneous stratification patterns leads to so-called 
Gardner’s equation (Holloway et al. 1997; Grimshaw et 
al. 2004, 2010; Talipova et al. 2014, 2015). 

The coefficients of this equation at a particular 
location depend on the properties of stratification in this 
location. A reliable implementation of models of this 
type thus requires an adequate representation of the 
horizontal variability in stratification along the wave 
propagation direction. The relevant information is 
commonly extracted either from in situ measurements or 
in a generalized form from contemporary hydrophysical 
data bases and atlases such as the World Ocean Atlas or 
Generalized Digital Environmental Model. These sources 
usually contain gridded monthly average vertical profiles 
of salinity and temperature, from which one can derive 
the required vertical density profiles. This approach  
has been used for the analysis of the properties of 
coefficients of Gardner’s equation and associated regimes 
of the propagation of internal waves in many regions of 
the World Ocean such as the Mediterranean Sea and the 
Black Sea (Ivanov et al. 1993; Kurkina et al. 2017а), 
several parts of the Arctic seas (Poloukhin et al. 2003; 
Polukhin et al. 2004), the Baltic Sea (Talipova et al. 
1998; Kurkina et al. 2011) and the South China Sea 
(Grimshaw et al. 2010; Liao et al. 2014; Kurkina et al. 
2017b). 

The Sea of Okhotsk (Zonn & Kostianoy 2009) is  
a marginal sea on the eastern shelf of the Eurasian 
continent (Fig. 1). Its several features are similar to 
those of the Baltic Sea. It is separated from the western 
Pacific Ocean by the Kamchatka Peninsula in the east 
and by the chain of Kuril Islands in the southeast. The 
islands of Hokkaido and Sakhalin separate this water 
body from the Sea of Japan. Its area (1 583 000 km2) 
and mean depth (851 m) are much larger than the 
surface area and depth of the Baltic Sea. A voluminous 
discharge of the Amur River into the Sea of Okhotsk 
results in the rise of the freezing point of the sea and in 
this way supports the formation of the massive presence 
of ice floes during each winter. 

In spite of severe climate and a location at 
comparatively high latitudes, the Sea of Okhotsk has  
a highly productive ecosystem and large fish stock. 
Extensive reserves of gas and oil below the seabed 
make this basin an attractive location for various 
engineering activities. The fastest development occurs 
in the nearshore of Sakhalin. While it is usually assumed 
that harsh ice conditions, frequent storm winds and severe 
seas create the greatest danger to the drilling rigs and 
other constructions in the Arctic region (Petterssen 2011), 
the situation in the Sea of Okhotsk is even more 
complicated because of the frequent presence of highly 
energetic internal waves. There exist only a few contact 
measurements of such structures in the shelf region of 
the Sea of Okhotsk. The existing records indicate that 
internal waves in this basin may have the appearance  
of internal solitons with an amplitude of 5–15 m and 
length of 200–400 m (Nagovitsyn & Pelinovsky 1988; 
Nagovitsyn et al. 1991). However, numerous signatures 
of single internal waves and various wave packets are 
evident in satellite photos (Jackson 2004) in many 
regions of the Sea of Okhotsk, including the above-
mentioned nearshore of Sakhalin. Similarly to the 
situation in many other parts of the World Ocean, trains 
of internal waves have often a shape of localized wave 
packets whereas their leading waves are often the largest 
ones. As these trains frequently resemble combinations 
of internal solitary waves and undular bores, we shall 
call such trains solibores in what follows. The main 
source of energy of internal waves is the barotropic tide. 
Its motion gives rise to high-amplitude internal waves 
once in every 12.4 h. This feature leads to a highly 
periodic propagation pattern of internal waves in the Sea 
of Okhotsk. 

In this paper we aim at the clarification of spatial 
distributions of the basic parameters that govern the 
propagation regime and the resulting seasonal variations 
in the main properties of internal waves in the Sea of 
Okhotsk. We employ a somewhat simplified approach 
in order to derive estimates of limiting values of 
internal wave properties. For this purpose it is to a 
first approximation acceptable to exclude the effect of 
the Earthʼs rotation and to avoid the calculation of the 
exact location of the internal wave generation from 
internal tides. 

These distributions reflect not only the geographic 
variability of the bathymetry and water masses of this 
basin but also mirror strong seasonal variations in the 
atmospheric and hydrographic features in the region. 
These parameters are crucial for both detailed simulations 
and express estimates of hydrodynamic loads to various 
engineering structures in the study area. The derived 
estimates are applied to evaluate the deviations of 
isopycnal surfaces from their undisturbed positions 
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under the impact of internal waves (equivalently, the 
amplitudes of internal waves) and velocity fields in such 
waves in prospective locations of oil and gas platforms 
on the shelf of Sakhalin. 

The structure of the paper is as follows. We start 
from the construction of maps of seasonal variations in 
the basic parameters that characterize the stratification 
pattern of the water masses in the study area. This is 
followed by a short insight into the models commonly 
used for the description of long weakly nonlinear 
internal waves. Next, the maps of the core kinematic 
parameters and coefficients at nonlinear terms of  
the relevant Gardner’s equation (often called nonlinear 
parameters) are presented. Finally, we provide a selection 
of results of the numerical simulation of properties of 
internal waves in winter and summer conditions and a 
short discussion of the main results. 

 
 

SEASONAL  VARIATIONS  IN  STRATIFICATION  
 
The dynamics of the Sea of Okhotsk represent a 
combination of several common features of a coastal sea 
in some of its parts with the classic features of shelf seas 
in its deeper parts. While the average depth of that sea is 
821 m, the largest depth reaches 3374 m in the Kuril 
(also Kuril–Kamchatka) trench. Its water masses interact 
with processes in the Pacific along many straits between 
different islands of the Greater Kuril Ridge and Lesser 
Kuril Ridge. Intense exchange of mass and energy with 
the Japan Sea occurs via the La Pérouse Strait (or Sōya 
Strait). Another connection to the Japan Sea exists via 
the Nevelskoy Strait, the Amur River estuary and Tartary 
Strait (or Gulf of Tartary). 

The seabed of the Sea of Okhotsk represents three 
types of morphologic zones. Relatively shallow (depths 
>200 m) and wide (180–250 km) nearshore areas of the 
Asian continent and clearly narrower shallow nearshore 
zones of Sakhalin and the Kamchatka Peninsula cover 
about 20% of the entire sea and exhibit typical features 
of a shelf sea. The water depth increases more or less 
steadily along the continental slope from the nearshore 
towards the central Sea of Okhotsk where the water 
depth is between 1000 and 2000 m. This gently sloping 
domain covers about 65% of the Sea of Okhotsk.  
It contains several single underwater elevations and 
depressions with large gradients of the seabed and with 
typical horizontal and vertical scales of 10–20 km and 
100–200 m, respectively. A deep-water trench, with 
depths exceeding 2500 m, represents about 8% of the 
sea surface. 

The shelf sea in the vicinity of Sakhalin is located  
in the middle-latitude temperate climate zone where 
seasonal warming of surface waters substantially affects 

the temporal course of the stratification of water masses. 
During winter months typically sea ice is formed on the 
surface. Ice cover is a standard feature in the nearshore 
of northern Sakhalin. The formation and melting of sea ice 
additionally contributes to the formation of and variation 
in the salinity-driven stratification. This impact often lasts 
until almost midsummer when sea ice finally melts. 

Generalized and standardized information about the 
basic features of hydrophysical parameters of sea water 
and their seasonal variations has been integrated into  
the open source digital climatologic atlas Generalized 
Digital Environment Model (GDEM) (Teague et al. 1990). 
Its version 3.0 (Carnes 2009) provides monthly averaged 
coefficients of empirical formulas that represent the 
vertical profiles of temperature and salinity at 77 vertical 
levels. The information is gridded to a regular rectangular 
set with a horizontal resolution of 1/2° in the open ocean. 
Many coastal areas and marginal seas have a resolution 
of this information of 1/6°. 

The profiles have been calculated using the standard 
approach of Fofonoff & Millard (1983) based on the 
classic definition of the Brunt–Väisälä frequency ( )Ν z : 

 

2 0

0

( )
( ) .

( )

d zgΝ z
z dz




                    (1) 

 
Here z indicates the vertical location, g is accele-

ration due to gravity and 0 ( )z  represents the vertical 
variation in water density. 

The vertical structure of the Brunt–Väisälä frequency 
(and, consequently, the vertical structure of water masses) 
is greatly different in January and July (Fig. 2) on the 
continental shelf to the northeast of Sakhalin in an area 
where the density of existing observations is relatively 
high. Horizontal variations in the Brunt–Väisälä frequency 
and water density are relatively small and smooth for 
each of these months. The values of both quantities vary 
insignificantly between seasons in most of the water 
column and are almost constant below a depth of 250 m. 
All substantial changes in the water properties are 
concentrated in the uppermost layer with a thickness  
of 200–250 m. The variations in the Brunt–Väisälä 
frequency N(z) are moderate in the entire water column 
along this profile in January (Fig. 2). The maximum 
values of this frequency reach 0.0065 s–1 during this 
month in both nearshore relatively shallow waters and 
in the deep part of the transect indicated in Fig. 1. The 
maximum values of N(z) are much larger, up to 0.02 s–1 
in July whereas these maxima are again almost constant 
along the transect. 

Maps of spatial distributions of the maximum values 
Nmax of the Brunt–Väisälä frequency N(z) (Fig. 3A, B) 
indicate that the vertical structure of water masses of the  
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Sea of Okhotsk exhibits great seasonal variations. The 
maxima of Nmax in summer are, on average, four times 
as large as the relevant maxima in winter. This contrast 
is even larger near Magadan where Nmax in summer is 
up to six times as large as in winter. Figure 2 suggests 
that the variations in N(z) are relatively small in winter. 
This assertion is confirmed by the narrowness of the 
empirical probability distribution of N(z) (Fig. 3C). The 
relevant histogram indicates that the values of N(z) are 
in the range of 0.002–0.01 s–1 and concentrated around 
the value of 0.005 s–1. The similar distribution for July 
is much wider, contains the majority of values in the 
range of 0.01–0.038 s–1 and is centred at 0.025 s–1. 

The depth at which the maximum values Nmax of the 
Brunt–Väisälä frequency N(z) occur (Fig. 4) strongly 
varies in both summer and winter. This depth is the 
smallest (10–20 m) in the deep part of the Sea of 
Okhotsk but much larger (40–60 m) on the northeastern 
shelf of Sakhalin and even greater on the northwestern 
shelf of this sea in January. The depth in question 
strongly decreases in summer. The maximum values 
Nmax are mostly observed in the surface layer at depths 
of 0–20 m. Only in a middle segment of the western 
shelf of Sakhalin the maximum values of N(z) occur at 
depths of 30–35 m. The presented features suggest that 
propagation regimes of internal (solitary) waves may 
greatly vary depending on the particular season and 
geographical location. 

KINEMATIC  PARAMETERS  OF  LONG  
INTERNAL  WAVES  IN  THE  SEA  OF  OKHOTSK 
 
A convenient model for the description of many 
properties of long internal waves of the first mode is the 
so-called extended Korteweg–de Vries equation with 
combined nonlinearity. This equation, often called 
Gardner’s equation, has been widely used for both 
theoretical and numerical studies of this phenomenon 
(Lamb & Yan 1996; Pelinovsky et al. 2007; Maderich et 
al. 2009, 2010; Talipova & Pelinovsky 2013; Talipova 
et al. 2014, 2015). This model equation has the following 
dimensional form: 
 

3
2

1 3
( ) 0,c

t x x

       
    

  
          (2) 

 

where   denotes the deviation of the isopycnal surface 
from its undisturbed location (measured at a depth that 
corresponds to the maximum of the vertical mode),  
с is the phase speed of long internal waves,  is the 
coefficient at the quadratic term (often called the 
quadratic nonlinearity coefficient), 1 is the coefficient 
at the cubic term (often called the cubic nonlinearity 
coefficient) and  is the coefficient at the linear 
(dispersive) term and is sometimes called the dispersion 
coefficient. 

       A                                                                                   B 

 
 

Fig. 1. Bathymetry of the Sea of Okhotsk (A) and its western section near Sakhalin (B). The red line near the northeastern coast of
Sakhalin shows the location of the cross section (called transect below) for data presented in Fig. 2 and for the modelling of the
transformation of the baroclinic internal tide into a solibore. 
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A description of the vertical structure and the phase 
speed of long linear internal waves c can be found  
(in the Boussinesq approximation) from the following 
Sturm–Liouville problem: 
 

2 2

2 2

( )
0

d N z

dz c


                        (3) 

 

with homogeneous boundary conditions 
 

(0) ( ) 0.H                             (4) 
 

Here Ф is so-called mode function that represents the 
vertical structure of internal waves, z is, as above, the 
vertical coordinate, 0z   at the bottom, z H  at the 
sea surface and the z-axis is directed upwards. 

The theory of internal waves based on Gardner’s 
equation and Eqs (3), (4) is valid for any wave mode. 

However, in practice this theory is usually applied to 
waves of the first or the second mode. The first mode 
corresponds to the case when the mode function (z) 
does not vanish within the interval [0, H] and the phase 
speed c is the largest eigenvalue of the Sturm–Liouville 
problem (3), (4). The second mode represents the case 
when (z) has exactly one zero-crossing and two 
extreme values within the interval [0, H]. These cases 
cover more than 95% of all observations of internal 
waves in the World Ocean.    

A unique solution for the Sturm–Liouville problem 
(3), (4) can be specified using certain additional 
conditions. It is customary to normalize the function 
(z) for the waves of the first mode so that this 
function is positive and its maximum max (z) = 1. If 
this condition is applied, the function  (x,t) describes 
deviations of the isopycnal surface from its undisturbed 
position at the location  z = zmax  where the maximum 

         A                                                                                 B 

 

Fig. 2. Characteristic vertical structure of water density (A, B) and the Brunt–Väisälä frequency (C, D) in January (A, C) and July
(B, D) along the cross section of the northeastern shelf of Sakhalin indicated in Fig. 1.  

        C                                                                                  D 
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of the mode function is reached. The deviations of 
isopycnal surfaces at other depths are described by the 
following equation: 
 

2( , , ) ( , ) ( ) ( , ) ( ),z x t x t z x t F z             (5) 
 

where F (z) is the (first-order) nonlinear correction to  
the vertical mode function (z). This correction is 

evaluated from the following inhomogeneous boundary 
problem: 
 

22 2 2

2 2 2

3
,

2

d F N d d d
F

c dz dzdz c dz

          
   

      (6) 

 

max(0) ( ) 0; ( ) 0.F F H F z              (7) 

       A                                                                                    B 

 
 

    C                                                                                    D 

 
Fig. 3. Maps of maximum values Nmax of the Brunt–Väisälä frequency N(z) (colour scale, s–1) in January (A) and July (B) and
histograms of the occurrence of different values of Nmax in January (C) and July (D). The entire range of values of Nmax is divided
into 100 intervals of equal length. Here n indicates the number of occurrence of single values of Nmax in each of such interval out
of the total number of 3474. 
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The coefficients , 1 and  are expressed using 
these functions as follows: 
 

3 2

0 0

3
, ,

2

H Hc d d
dz D dz

D dz dz
         

         (8) 

 
2

0
,

2

Hc
dz

D
                           (9) 

 

 
 

Equation (9) indicates that the coefficient  is always 
nonnegative. The coefficients  (Eq. 8) and 1 (Eq. 10) 
at the quadratic and cubic nonlinear terms may be 
positive or negative and may also vanish. The values of 
parameters c, , 1 and  obviously depend on the 
properties of the vertical stratification and the water 
depth. Spatial variations in the stratification and different 
features of bathymetry may lead to substantial changes 
in the magnitude of all these coefficients and even to a 
swap of the sign of coefficients at the nonlinear terms of 

Gardner’s equation. These changes may be associated 
with major modifications of the propagation of internal 
waves and even to radical reshaping of the dynamics of 
the wave field (Talipova et al. 2011; Kurkina et al. 2015). 
This feature stresses the importance of an adequate 
evaluation of possible parameter values and associated 
propagation regimes of internal waves in various basins. 
This paper provides such climatologically valid estimates 
for the entire Sea of Okhotsk. 

Seasonal changes in so-called linear parameters  
of internal wave propagation – the phase speed с  
(Fig. 5) and the coefficient at the dispersive term  
(Fig. 6) – are insignificant. Also, the major features  
of spatial distributions of these parameters do not 
show any substantial changes over different seasons. 
Their maximum values (about 2 m s–1 and 9  105 s–1, 
respectively) are found in the deep-water area of the 
Kuril trench. 

Spatial variations in the values of both these 
parameters are mostly governed by the water depth (cf. 
Fig. 1 with Figs 5 and 6). Also, both these parameters 
can be adequately approximated as quadratic functions 
y = p1h

2 + p2h + p3. It is convenient to use the normalized 
water depth h = (H – H0)/, H0 = 988.4 m,  = 1035 m 
for this procedure. The relevant approximations (with 
95%-confidence interval indicated in the brackets) are 
given by the following expressions:  

       A                                                                                   B 

 
 

Fig. 4. Maps of the depths Hp (colour scale, m) where the Brunt–Väisälä frequency N(z) reaches its maximum values in January
(A) and July (B). 

.   (10) 
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– phase speed с, m s–1, in January, R2 = 0.988: 
 

2( 0.1527 0.0044) (0.7263 0.0063)

(0.8746 0.0058);

c h h    
 

   
(11)

 

 

– phase speed с, m s–1, in July, R2 = 0.981: 
 

2( 0.1191 0.0051) (0.6465 0.0073)

(0.9275 0.0067);

c h h    
 

   
(12)

 

 

– the coefficient β, m3 s–1, at the linear term in January 
and July, R2 = 0.996: 

 

4 2(8.977 0.074) 10 (1.32 0.01)

(4.732 0.01).

h h     
 

     
(13)

 

As the values of the coefficient at the dispersive term  
in January match well the similar values in July, the same 
approximation is eventually valid for the entire year. 

The presented analysis reveals that the coefficients 
at the linear terms of Gardner’s equation (phase speed c 
and the coefficient at the dispersive term) exhibit only 
weak seasonal variations. Consequently, for first-order 
express estimates it is conditionally acceptable to use their 
annual average values. The largest seasonal variations in 
these parameters occur in relatively shallow shelf regions 
of the Sea of Okhotsk where it is still recommended to 
employ their seasonal values. 

The coefficients at nonlinear terms  and 1 (Figs 7, 
8) are clearly more sensitive with respect to particular 

       A                                                                                    B 

 
                                                                                                C 

 

 

 

Fig. 5. Spatial distributions of the phase speed c (colour
scale, m s–1) of long linear internal waves of the lowest
(first) mode in the Sea of Okhotsk in January (A) and July
(B), and the scatter plot of the values of the phase speed
versus water depth H in January (blue circles) and July
(red squares) (C). Solid lines in panel C represent an
approximation of the set of points using a quadratic
polynomial and dashed lines indicate the 95% confidence
intervals of this approximation. 
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seasonal structure of water masses. They exhibit sub-
stantial seasonal variations and in some regions even 
vanish or change their sign. 

The values of the coefficient  at the quadratic term 
of Gardner’s equation lie in the interval of (–0.01; 
0.01) s–1 in January (Fig. 8A). The magnitudes of negative 
examples of this coefficient are larger and extend to  
–0.03 in July (Fig. 8B). While most of the values of  
are negative, there are several sea areas where this 
coefficient is positive in January. Such areas are found 
near the shores in the Strait of Sakhalin, in some small 
bays, in the northeastern shelf sea of Sakhalin, to the 
west of the Kamchatka Peninsula and in the central 
region of the Sea of Okhotsk. Such areas are only present 

in winter. Most of them disappear in summer when the 
coefficient  becomes negative in the almost entire Sea 
of Okhotsk. The absolute values of  increase in shelf 
regions of the sea and its typical values reach –0.01 s–1. 
The polarity of solitary internal waves generated at 
underwater slopes matches the sign of this coefficient. 
Consequently, solitary internal waves should pre-
dominantly have negative polarity in the Sea of Okhotsk. 
This conjecture matches the existing observational data 
(Nagovitsyn & Pelinovsky 1988; Nagovitsyn et al. 1991). 

The coefficients 1 at the cubic term of Gardner’s 
equation are generally very small in the entire sea  
in January. Relatively large positive values (up to 
0.0002 m–1 s–1)  occur only in a few elongated areas.  

     A                                                                                    B 

 
     C            

 
 

 
 
 
 
 
 
Fig. 6. Spatial distributions of the coefficient  (colour
scale, m3 s–1) at the linear term of Gardner’s equation in the
Sea of Okhotsk in January (A) and July (B), and the scatter
plot of the values of  versus water depth H m in January
(blue circles) and July (red squares) (C). Solid lines in
panel C represent an approximation of the set of points
using a quadratic polynomial and dashed lines indicate the
95% confidence intervals of this approximation. 
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One such area stretches from the western shore of the 
Kamchatka Peninsula towards the eastern coast of 
Sakhalin. Somewhat smaller in magnitude but negative 
values are located on the northern shelf of the Sea of 
Okhotsk. 

The distribution in question is greatly different in 
summer. There are extensive areas of comparatively 
large (up to 0.0002–0.0004 m–1 s–1) positive values of  
1 whereas the domains with negative values of this 
coefficient shrink considerably. This distribution may 
substantially modify propagation properties of internal 
waves. In the areas of positive values of 1 the phase 
speed c of long linear internal waves is about 0.3 m s–1. 
The first-order nonlinear correction to this speed for 
waves with a reasonable amplitude of 10 m is about 
0.1 m s–1 and thus on the order of 1/3 of the linear wave 
speed. The impact of the cubic nonlinearity adds 
approximately 0.03 m s–1, that is, another 10% of the 
linear wave speed. Consequently, wave dynamics may 
markedly change from that of the purely linear wave 
regime in areas where both  and 1 are relatively large. 
As the particular values of the coefficients at the non-
linear terms of Gardner’s equation are very sensitive 
with respect to small variations in the stratification  
of water masses, the presented estimates based on 
climatological maps of these parameters should be 
interpreted as indicative. 

 
 

TRANSFORMATION  OF  THE  BAROCLINIC  
INTERNAL  TIDE  INTO  A  SOLIBORE 
 
To demonstrate some applications of the constructed 
maps of various coefficients of Gardner’s equation, we 
consider the process of the formation of internal waves 
from the baroclinic internal tide in typical conditions  
of the northeastern shelf of Sakhalin and the adjacent 
continental slope in the winter (January) and summer 
(July) seasons. We use the Gardner model (Eqs (2)–(10)) 
as the basis of our estimates. This model is applied to a 
horizontally inhomogeneous case. The relevant modifi-
cations towards the use of spatially varying coefficients 
are described in detail in Talipova et al. (2014) and 
Kurkina et al. (2017a). 

It is well known that a classic (barotropic) tide that 
propagates from the deep ocean into stratified water 
masses on the continental slope often transforms into  
a baroclinic tide (Vlasenko et al. 2005). We use this 
phenomenon as a boundary condition at the oceanside 
border of the combined shallow-water shelf region and 
continental slope of the sea and follow the further 
propagation of the internal wave along the transect 
indicated in Fig. 1. We assume that a baroclinic tidal 
wave with a sinusoidal shape  
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amplitude of A = 10 m and period of TM2 = 12.4 h 
propagates from its likely generation area (the relatively 
steep slope from the nearshore of Sakhalin towards  
the central basin of the Sea of Okhotsk) towards the 
shores of Sakhalin. As the nearshore and the adjacent 
continental slope are almost homogeneous (that is, the 
bottom isolines are almost parallel to each other), it is 
acceptable to assume that the process generates a plane 
wave. This assumption greatly simplifies the modelling 
problem without any substantial loss of generality. 

The starting point of the transformation of the 
baroclinic tide into an internal wave is chosen at a 
distance of 153 km from the shoreline in an area where 
the almost horizontal seabed of the central basin of the 
Sea of Okhotsk ends and the continental slope starts. 
This location is called the origin (of the transect) below. 
The typical values of the coefficients of Gardner’s 
equation (2) all vary greatly along this transect in both 
seasons (Fig. 9). It is not unexpected that the (linear) 
propagation speed of such an internal wave is almost 
independent of the particular season. The difference 
between the typical values of the coefficient  at the 
dispersive term of Gardner’s equation in January and 
July reaches up to 10%. Importantly, the coefficients  
and 1 at the nonlinear terms of this equation vary 
largely and in many occasions even their signs are 
different in summer and winter. Consistently with the 
above (Fig. 7), the coefficient  at the quadratic term is 
negative along the entire transect in January. It has 
relatively small magnitude in a part of the transect  
(80–90 km from its origin), reaches its maximum absolute 
value –2  10–3 s–1 at a distance of about 125 km from 
the origin and vanishes in the nearshore. The coefficient 
 turns into zero at a distance of 150 km from the origin. 
This happens in shallow water where the depth is only 
130 m (Fig. 7A). 

The values of the coefficient 1 at the cubic term 
have predominantly a very small magnitude (of the 
order of 10–4) during both seasons. The values of 1 are 
particularly small in January. This parameter changes its 
sign at a distance of about 80–90 km from the origin; 
however, its magnitude remains small. The maximum of 
|1|  6 × 10–5 m–1 s–1 is located at the landward end of 
the transect. The results indicate that the shape of internal 
solitons is governed by the sign of the coefficient  at  
the quadratic term and thus internal solitons propagating 
along this transect have exclusively negative polarity  
in winter.  

To characterize the changes in the wave amplitude 
owing to changes in the surrounding environment 
(water depth and stratification), we use an analogue  
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of the shoaling coefficient for surface waves in a linear 
approximation (Talipova et al. 2014). Changes in this 
parameter (Q in Fig. 9) signal that the amplitudes of 
internal solitons propagating along this transect increase 
considerably (by a factor of 1.5 in July and up to three 
times in January). It is thus likely that large-amplitude 
internal solitons are regularly present in the nearshore of 
northwestern Sakhalin. The discussed pattern of changes 
in the coefficient 1 at the cubic term indicates that 
these solitons will transform into ‘fat’ or table-like dis-
turbances. Such phenomena excite large vertical velocities 
and often drive strong mixing in affected areas. 

The coefficient  at the quadratic term is negative 
everywhere in July. Its values change smoothly from 
very small ones in the deeper part of the transect up to 
the level of –8  10–3 s–1 at the landward end of the 
transect. On the contrary, the coefficient 1 at the cubic 
term is exclusively positive in July. Its values increase 
smoothly from almost zero in the deeper part of the 
transect up to about 4  10–4 m–1 s–1 at the landward end. 
Consequently, internal solitons of both polarities may 
exist in this region in summer months. The maxima of 
the coefficient Q are much smaller in July than in 
January, therefore, the amplitudes of internal solitons at 
the landward end of the transect are apparently smaller 
in July than in January. 

The described differences in the values of the 
coefficients of Gardner’s equation (2) obviously affect 
the properties of the propagation and transformations of 
several classes of solitary internal waves. To illustrate the 
possible extent of changes that a soliton may experience 
along the transect indicated in Fig. 1, we consider two 
scenarios of the formation of solibores (Figs 10, 11). 

In typical conditions of January the onset of the 
formation of solitons from the baroclinic tidal wave 
with an amplitude of 10 m is located at a distance of 
approximately 130 km from the origin of the transect. 
The emerging solitary waves further transform into 
solibores that consist of a ‘fat’ (table-like) soliton and 
one or two soliton-like disturbances that lag behind the 
table-like feature. Further on, at a distance of 137 km 
(Fig. 12A) from the origin the lag is larger but the 
leading table-like soliton is still in contact with the 
solibore. The amplitude of the leading disturbance has 
greatly increased compared to the amplitude of the 
forcing internal tide. The most affected isopycnal surface  
(at a depth where the mode function has its maximum)  
moves down by almost 70 m. In other words, we observe 
the 3.5-fold amplification of the forcing wave whereas 
the resulting disturbance is unipolar. 

In summer the same forcing (a sinusoidal baroclinic 
tide with an amplitude of 10 m) leads to a somewhat 
faster formation of solitons and also to a somewhat 
more accelerated course of the entire process. A soliton 

becomes discernible at a distance of 125 km (water 
depth 240 m) from the origin of the transect (Fig. 11). 
The further development is much faster than in winter. 
The leading soliton with an amplitude of 35 m practically 
separates from the subsequent waves already after 7 km, 
at a distance of 132 km (water depth 170 m) from the 
origin (Fig. 12B). 

The leading soliton grows rapidly. Its numerically 
simulated amplitude is already 50 m at the landward end 
(150 km from the origin) of the transect where the water 
depth is only 120 m. For this water depth and the 
projected amplitude the weakly nonlinear Gardner’s 
model, strictly speaking, becomes invalid. It is not clear 
what exactly will happen with such chains of solitary 
internal waves. Most likely the largest waves break at 
some distance from the shore and create very strong 
mixing and a multitude of smaller-amplitude internal 
(solitary) waves. 

Our results suggest that substantial amplification of 
amplitudes of internal waves is an intrinsic feature of 
wave propagation in this region. It is expected that in 
certain seasons quite usual amplitudes (about 5 m) of 
the semidiurnal internal tide will drive complicated 
patterns of internal solitons in the nearshore of Sakhalin, 
with the amplitude of the leading soliton of up to 35 m. 
The polarity of such solitons is defined by the sign of 
the coefficient  at the quadratic term of Gardner’s 
equation at a location of their onset, that is, approximately 
110 km from the origin. As this term is negative and  
the coefficient 1 at the cubic term is very small, the 
emerging solitons will have also negative polarity. The 
above-discussed changes in the coefficient 1 at the cubic 
term do not change the polarity. Therefore, only the 
amplitude and shape of emerging solitons will change. 

 
 

DISCUSSION  AND  CONCLUSIONS 
 
It is well known that the core properties of the stratifi-
cation of the upper layer of the Sea of Okhotsk have, 
similarly to other water bodies on temperate latitudes, 
strong seasonal variability. Some of its features resemble 
those in much more sheltered and/or brackish regions. 
Differently from the open ocean, the main pycnocline  
is located relatively close to the sea surface in winter 
(normally at a depth of 30–50 m) and much deeper (at a 
depth of about 100 m) in summer. Summer warming 
gives rise to a seasonal pycnocline that is located at a 
depth of 10–30 m. 

The maxima of the Brunt–Väisälä frequency also 
vary substantially, from 0.01 s–1 in winter to 0.04 s–1 in 
summer. These features give rise to major changes in 
the propagation regimes of large-amplitude internal 
waves in winter and summer. Such changes evidently  
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Fig. 7. Spatial distributions of the coefficient  (colour scale, s–1) at the quadratic term of Gardner’s equation in the Sea of
Okhotsk in January (A) and July (B). The coefficient  vanishes along the bold lines. 

 
 

      A                                                                                   B 

 
 

Fig. 8. Spatial distributions of the coefficient 1 (colour scale, m–1 s–1) at the cubic term of Gardner’s equation in the Sea of
Okhotsk in January (A) and July (B). The coefficient 1 vanishes along the bold lines. 
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Fig. 9. Coefficients of Gardner’s equation (2) along the transect on the continental shelf near the northeastern coast of Sakhalin in
January (A) and July (B). The red line indicates the zero level. 
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occur also in other water bodies with qualitatively similar 
stratification properties such as the Baltic Sea. 

As expected, the propagation speed of long linear 
internal waves and dispersion properties of internal 
waves are largely invariant in the Sea of Okhotsk 
with respect to seasonal changes in stratification. The 
coefficients at the nonlinear terms of the governing 
(Gardner’s) equation are much more sensitive to seasons, 
being either negative or positive. Their largest absolute 
values are found in shallow nearshore areas. 

Even though winter stratification is relatively weak 
and the typical values of the coefficient at the cubic 
nonlinearity of Gardner’s equation are of the order of 
10–5 m–1 s–1, the effects driven by the presence of the 
cubic nonlinear term are decisive in some regions of the 
sea. This kind of impact is associated with the presence 
of areas where the coefficient at the quadratic term of 
Gardner’s equation vanishes. Such a situation is charac-
teristic along transects on the shelf and continental slope 
of the eastern coast of Sakhalin where internal tide is the 

main driving force of internal waves. Such a tide with  
a realistic amplitude of 10 m in wintertime conditions 
may create (after a chain of transformations on the 
continental slope) a prominent solibore that contains  
an up to 70 m high kink followed by a ‘fat’ (table-like) 
internal soliton. Similar effects are also pronounced in 
summer when the summer-type stratification may support 
the generation and propagation of Gardner solitons with 
an amplitude of up to 25–30 m. 

The described essential difference in the amplifi-
cation rates of internal solitons in January and July 
stems from the large difference in the variations in 
water density in summer and winter. The typical total 
variation in water density from the sea surface to the 
seabed is about 1 kg m–3 in winter but increases by 
almost a factor of two, up to almost 2 kg m–3 owing to 
warming and presence of less salty water in summer. 

Our modelling exercises employ the classic weakly 
nonlinear models of internal waves. The relevant 
governing equations belong to the family of Korteweg– 

                     A                                                                  B 

 
 

Fig. 10. Evolution of a baroclinic tide along the transect on the northeastern continental slope of Sakhalin (Fig. 1) in January: (A)
deviations of isopycnal surfaces at different time instants along the transect. The solid line shows water depth and the distance is
given from the deep-water end (origin) of the transect; (B) space–time (x–t) diagram of these surfaces (colour scale, m). 
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                      A                                                                 B 

 
 

Fig. 11. Evolution of a baroclinic tide along the transect on the northeastern continental slope of Sakhalin (Fig. 1) in July.
The notations are the same as for Fig. 10. 

 
 

          A                                                                       B 

 
 

Fig. 12. Simulated deviations of isopycnal surfaces from their undisturbed position in the field of solibores driven by an internal
tidal wave with an amplitude of 10 m along the transect indicated in Fig. 1 in January (A) and July (B). The distance is given from
the deep-water end (origin) of the transect. The white line indicates deviations of the isopycnal surface at the location where the
modal function reaches its maximum. This deviation is directly described by Gardner’s equation. 
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de Vries equations. These equations, including Gardner’s 
equation (2), are, strictly speaking, only capable of 
replication of one-dimensional fields of motion in a 
spatially homogeneous field of density in an ocean of 
constant depth. 

Their straightforward extensions are applicable to a 
spatially changing stratification and water depth, however, 
the changes may only occur in the wave propagation 
direction and the situation must be homogeneous along 
the wave crests. Therefore, our results are, for example, 
valid for cases when a wave runs across a continental 
slope with straight isobaths and a constant stratification 
along these isobaths. Such situations often occur in the 
ocean. In these occasions Gardner’s equation and its 
counterparts can be used for extensive analysis of 
various phenomena in the water column and associated 
changes in hydrophysical fields. 

For example, it is straightforward to calculate 
horizontal and vertical velocities of water parcels in 
complicated fields of internal waves (Kurkina et al. 
2011). These velocities depend on the properties of 
waves and on the particular environmental conditions. 
For example, the internal waves presented in Fig. 12 
excite maximum speeds of water parcels at the sea 
surface and at the seabed approximately 0.2 m s–1 in 
January and 0.3 m s–1 in July. 

 
 

Acknowledgements. This study was initiated in the frame-
work of the state task programme in the sphere of scientific 
activity of the Ministry of Education and Science of  
the Russian Federation (projects Nos 5.4568.2017/6.7 and 
5.1246.2017/4.6) and financially supported by this programme, 
grants of the President of the Russian Federation (NSh-
6637.2016.5), Russian Foundation for Basic Research (grant 
No. 16-05-00049) and the institutional support IUT33-3 from 
the Estonian Research Council. The referees E. Pelinovsky 
and Y. Stepanyants are thanked for their valuable remarks on 
the manuscript. The publication costs of this article were 
partially covered by the Estonian Academy of Sciences. 

 
 

REFERENCES 
 
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., 

Buijsman, M. C., Centuroni, L. R., Chao, S.-Y., Chang, 
M.-H., Farmer, D. M., Fringer, O. B., Fu, K.-H., Gallacher, 
P. C., Graber, H. C., Helfrich, K. R., Jachec, S. M., 
Jackson, C. R., Klymak, J. M., Ko, D. S., Jan, S., 
Johnston, T. M. S., Legg, S., Lee, I.-H., Lien, R.-C., 
Mercier, M. J., Moum, J. N., Musgrave, R., Park, J.-H., 
Pickering, A. I., Pinkel, R., Rainville, L., Ramp, S. R., 
Rudnick, D. L., Sarkar, S., Scotti, A., Simmons, H. L., 
St Laurent, L. C., Venayagamoorthy, S. K., Wang, Y.-H., 
Wang, J., Yang, Y. J., Paluszkiewicz, T. & Tang, T.-Y. 
2015. The formation and fate of internal waves in the 
South China Sea. Nature, 521(7550), 65–69.  

Bourgault, D., Morsilli, M., Richards, C., Neumeier, U. & 
Kelley, D. E. 2014. Sediment resuspension and nepheloid 
layers induced by long internal solitary waves shoaling 
orthogonally on uniform slopes. Continental Shelf 
Research, 72, 21–33. 

Carnes, M. R. 2009. Description and Evaluation of GDEM-
V3.0. Naval Research Laboratory (NRL) Report 
NRL/MR/7330-09-9165, Naval Research Laboratory, 
27 pp. 

Grimshaw, R., Pelinovsky, E., Talipova, T. & Kurkin, A. 
2004. Simulation of the transformation of internal 
solitary waves on oceanic shelves. Journal of Physical 
Oceanography, 34, 2774–2791. 

Grimshaw, R., Talipova, T., Pelinovsky, E. & Kurkina, O. 
2010. Internal solitary waves: propagation, deformation 
and disintegration. Nonlinear Processes in Geophysics, 
17, 633–649. 

Fofonoff, N. & Millard, R. Jr. 1983. Algorithms for computation 
of fundamental properties of seawater. UNESCO Technical 
Paper in Marine Science, 44, 15–25. 

Holloway, P., Pelinovsky, E., Talipova, T. & Barnes, B. 1997. 
A nonlinear model of internal tide transformation on  
the Australian North West shelf. Journal of Physical 
Oceanography, 27, 871–896. 

Ivanov, V. A., Pelinovsky, E. N. & Talipova, T. G. 1993. 
Recurrence frequency of internal wave amplitudes in the 
Mediterranean. Oceanology, 33, 147–150. 

Jackson, C. R. 2004. An Atlas of Internal Solitary-like Waves 
and Their Properties. Prepared for Office of Naval 
Research, Code 322 PO. Global Ocean Associates, 560 pp. 
http://internalwaveatlas.com/Atlas2_PDF/IWAtlas2_Pg3
57_SeaofOkhotsk.pdf [accessed 10 June 2017]. 

Kurkina, O. E. & Talipova, T. G. 2011. Huge internal waves 
in the vicinity of the Spitsbergen Island (Barents Sea). 
Natural Hazards and Earth System Sciences, 11, 981–
986. 

Kurkina, O., Talipova, T., Pelinovsky, E. & Soomere T. 2011. 
Mapping the internal wave field in the Baltic Sea in the 
context of sediment transport in shallow water. Journal 
of Coastal Research, SI 64, 2042–2047. 

Kurkina, O. E., Kurkin, A. A., Rouvinskaya, E. A. & 
Soomere, T. 2015. Propagation regimes of interfacial 
solitary waves in a three-layer fluid. Nonlinear Processes 
in Geophysics, 22, 117–132. 

Kurkina, O. E., Kurkin, A. A., Pelinovsky, E. N., Semin, S. V., 
Talipova, T. G. & Churaev, E. N. 2016. Structure of 
currents in the soliton of an internal wave. Oceanology, 
56, 767–773. 

Kurkina, O., Rouvinskaya, E., Talipova, T. & Soomere, T. 
2017a. Propagation regimes and populations of internal 
waves in the Mediterranean Sea basin. Estuarine, Coastal 
and Shelf Science, 185, 44–54. 

Kurkina, O., Talipova, T., Soomere, T., Giniyatullin, A. & 
Kurkin, A. 2017b. Kinematic parameters of internal 
waves of the second mode in the South China Sea. 
Nonlinear Processes in Geophysics, 24, 645–660. 

Lamb, K. & Yan, L. 1996. The evolution of long wave 
undular bores: comparisons of fully nonlinear numerical 
model with weakly nonlinear theory. Journal of Physical 
Oceanography, 26, 2712–2734. 

Liao, G., Hua, X. X., Liang, C., Dong, C., Zhou, B., Ding, T., 
Huang, W. & Xu, D. 2014. Analysis of kinematic 



Estonian Journal of Earth Sciences, 2017, 66, 4, 238–255 

 254

parameters of internal solitary waves in the northern 
South China Sea. Deep-Sea Research, I, 94, 159–172. 

Liu, A. K., Su, F.-Ch., Hsu, M.-K., Kuo, N.-J. & Ho, Ch.-R. 
2013. Generation and evolution of mode-two internal 
waves in the South China Sea. Continental Shelf Research, 
59, 18–27. 

Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., 
Choi, B. H., Brovchenko, I., Terletska, K. & Kim, D. C. 
2009. Internal solitary wave transformation at the bottom 
step in two-layer flow: the Gardner and Navier–Stokes 
frameworks. Nonlinear Processes in Geophysics, 16, 
33–42. 

Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., 
Choi, B. H., Brovchenko, I. & Terletska, K. 2010. 
Interaction of a large amplitude interfacial solitary wave 
of depression with a bottom step. Physics of Fluids, 22, 
Art. No. 076602. 

Nagovitsyn, A. P. & Pelinovsky, E. N. 1988. Observations of 
solitons of internal waves in the coastal zone of the Sea 
of Okhotsk. Meteorology and Hydrology, 4, 124–126  
[in Russian]. 

Nagovitsyn, A. P., Pelinovsky, E. N. & Stepanyants, Yu. A. 
1991. Observation and analysis of solitary internal waves 
in the coastal zone of the Sea of Okhotsk. Soviet Journal 
of Physical Oceanography, 2, 65–70. 

Osborne, A. R. 2010. Nonlinear Ocean Waves and the Inverse 
Scattering Transform. Elsevier, San Diego, 944 pp. 

Pan, X., Wong, G. T. F., Shiah, F.-K. & Ho, T.-Y. 2012. 
Enhancement of biological productivity by internal 
waves: observations in the summertime in the northern 
South China Sea. Journal of Oceanography, 68, 427–
437. 

Pelinovsky, E., Polukhina, O., Slunyaev, A. & Talipova, T. 
2007. Internal solitary waves. In Solitary Waves in 
Fluids (Grimshaw, R. H. J., ed.), pp. 85–110. WIT Press. 
Southampton, Boston.  

Pettersen, T. 2011. Largest accident in Russian oil sector. 
Barents Observer, December 22, 2011. 

Poloukhin, N. V., Talipova, T. G., Pelinovsky, E. N. & 
Lavrenov, I. V. 2003. Kinematic characteristics of the 
high-frequency internal wave field in the Arctic Ocean. 
Oceanology, 43, 333–343. 

Polukhin, N. V., Pelinovsky, E. N., Talipova, T. G. & 
Muyakshin, S. I. 2004. On the effect of shear currents  
on the vertical structure and kinematic parameters of 
internal waves. Oceanology, 44, 22–29. 

Ramp, S. R., Yang, Y. J. & Bahr, F. L. 2010. Characterizing 
the nonlinear internal wave climate in the northeastern 
South China Sea. Nonlinear Processes in Geophysics, 17, 
481–498. 

Reeder, D. B., Ma, B. B. & Yang, Y. J. 2011. Very large 
subaqueous sand dunes on the upper continental slope in 
the South China Sea generated by episodic, shoaling 
deep-water internal solitary waves. Marine Geology, 279, 
12–18. 

Rutenko, A. N. 2010. The influence of internal waves on 
losses during sound propagation on a shelf. Acoustical 
Physics, 56, 703–713. 

Si, Z., Zhang, Y. & Fan, Z. 2012. A numerical simulation  
of shear forces and torques exerted by large-amplitude 

internal solitary waves on a rigid pile in South China 
Sea. Applied Ocean Research, 37, 127–132. 

Song, Z. J., Teng, B., Gou, Y., Lua, L., Shi, Z. M., Xiao, Y. & 
Qu, Y. 2011. Comparisons of internal solitary wave and 
surface wave actions on marine structures and their 
responses. Applied Ocean Research, 33, 120–129. 

Stastna, M. & Lamb, K. G. 2008. Sediment resuspension 
mechanisms associated with internal waves in coastal 
waters. Journal of Geophysical Research, 113, Art.  
No. C10016. 

Stober, U. & Moum, J. N. 2011. On the potential for 
automated realtime detection of nonlinear internal waves 
from seafloor pressure measurements. Applied Ocean 
Research, 33, 275–285. 

Talipova, T. G. & Pelinovsky, E. N. 2013. Modeling of 
propagating long internal waves in an inhomogeneous 
ocean: the theory and its verification. Fundamental and 
Applied Hydrophysics, 6, 46–54 [in Russian].  

Talipova, T., Pelinovsky, E. & Kõuts, T. 1998. Kinematics 
characteristics of the internal wave field in the Gotland 
Deep in the Baltic Sea. Oceanology, 38, 33–42. 

Talipova, T. G., Pelinovsky, E. N. & Kharif, Ch. 2011. 
Modulational instability of long internal waves of 
moderate amplitudes in a stratified and horizontally 
inhomogeneous ocean. JETP Letters, 94, 182–186. 

Talipova, T. G., Pelinovsky, E. N., Kurkin, A. A. & Kurkina, 
O. E. 2014. Modeling the dynamics of intense internal 
waves on the shelf. Izvestiya, Atmospheric and Oceanic 
Physics, 50, 630–637. 

Talipova, T. G., Kurkina, O. E., Rouvinskaya, E. A. & 
Pelinovsky, E. N. 2015. Propagation of solitary internal 
waves in two-layer ocean of variable depth. Izvestiya, 
Atmospheric and Oceanic Physics, 51, 89–97. 

Teague, W. J., Carron, M. J. & Hogan, P. J. 1990. A comparison 
between the Generalized Digital Environmental Model 
and Levitus climatologies. Journal of Geophysical 
Research, 95, 7167–7183. 

Vázquez, A., Flecha, S., Bruno, M., Macías, D. & Navarro, G. 
2009. Internal waves and short-scale distribution patterns 
of chlorophyll in the Strait of Gibraltar and Alborán Sea. 
Geophysical Research Letters, 36, Art. No. L23601. 

Vlasenko, V. & Stashchuk, N. 2015. Internal tides near the 
Celtic sea shelf break: a new look at a well known 
problem. Deep Sea Research, I, 103, 24–36. 

Vlasenko, V., Stashchuk, N. & Hutter, K. 2005. Baroclinic Tides: 
Theoretical Modeling and Observational Evidence. 
Cambridge University Press, Cambridge, 348 pp. 

Xu, J., Chen, Z, Xie, J. & Cai, S. 2016. On generation and 
evolution of seaward propagating internal solitary waves 
in the northwestern South China Sea. Communications  
in Nonlinear Science and Numerical Simulation, 32, 
122–136. 

Zonn, I. S. & Kostianoy, A. G. 2009. Okhotskoe More [Sea of 
Okhotsk]. Encyclopedia. Publishing house “International 
relations”, Moscow, 256 pp. [in Russian]. 

Warn-Varnas, A., Chin-Bing, S. A., King, D. B., Hawkins, J. 
& Lamb, K. 2009. Effects on acoustics caused by ocean 
solitons, Part A. Oceanography. Nonlinear Analysis, 71, 
e1807–e1817. 

 
 
 



O. E. Kurkina et al.: Dynamics of internal waves in the Sea of Okhotsk  

 255

Veemasside  stratifikatsiooni  sesoonsete  muutuste  mõju  siselainete  dünaamikale  
Ohhoota  meres 

 
Oxana E. Kurkina, Tatyana G. Talipova, Tarmo Soomere, Andrey A. Kurkin ja Artem V. Rybin 

 
Siselainete omadused ja dünaamika sõltuvad oluliselt veemasside vertikaalsest struktuurist ehk stratifikatsioonist. 
Sarnaselt Läänemerele varieeruvad ka Ohhoota meres stratifikatsiooni omadused tugevasti nii erinevates mere osades 
kui ka aastaaegade lõikes. On analüüsitud, kuidas taolised muutused mõjutavad nõrgalt mittelineaarsete siselainete 
omadusi ja käitumist kirjeldava Gardneri võrrandi parameetrite väärtusi, ning konstrueeritud selliste lainete faasikiiruse 
ja kõnesoleva võrrandi kõigi liikmete kordajate väärtuste kaardid erinevate aastaaegade jaoks. Saadud kaardid võimal-
davad kiiresti hinnata siselainete (sh solitonide) peamisi omadusi ja valida sobiv parameetrite komplekt selliste 
lainete reprodutseerimiseks arvutusmudelites. On näidatud, et pikkade nõrgalt mittelineaarsete siselainete faasi-
kiirus aastaaegade lõikes praktiliselt ei muutu. Gardneri võrrandi ruutliikme kordaja on suuremas osas merest negatiivne 
nii suvel kui ka talvel; seega on solitonilaadsed siselained selles meres harilikult negatiivse polaarsusega (st püknokliin 
liigub laines sügavamale). Numbriliste eksperimentide abil on näidatud, et Gardneri võrrandi kuupliikme kordaja väär-
tuste tuntava muutumisega eri aastaaegadel kaasnevad üldjuhul solitonide ja nende ahelate kujus olulised muutused. 
 
 

 
 


