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Abstract. A survey on the use of the Haar wavelet method for solving nonlinear integral
and differential equations is presented. This approach is applicable to different kinds of
integral equations (Fredholm, Volterra, and integro-differential equations). Application to
partial differential equations is exemplified by solving the sine-Gordon equation. All these
problems are solved with the aid of collocation techniques.

Computer simulation is carried out for problems the exact solution of which is known. This
allows us to estimate the precision of the obtained numerical results. High accuracy of the
results even in the case of a small number of collocation points is observed.

Key words: integral equations, evolution equations, Haar wavelet method, sine-Gordon
equation, collocation method.

1. INTRODUCTION AND BACKGROUND

Let us first explain why we need wavelets at all. A signal x = x(t) is often
analysed with the aid of the Fourier transform

F (ω) =
∫ +∞

−∞
x(t)e−iωtdt, (1)

where ω denotes the frequency and F – the amplitude.
Two signals x(t) and their Fourier diagrams are plotted in Fig. 1. Although

in both cases the Fourier diagrams are quite similar (both have two peaks), the
signals are completely different and the time information is lost. This is a serious
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Fig. 1. Time history and Fourier diagram for (a) x = sin 3t + 0.8 sin 10t for t ∈ [0, 10]
and (b) x = sin 3t for t ∈ [0, 5], x = sin 10t for t ∈ [5, 10].

drawback: the Fourier method analyses the signal over the whole domain and is
unable to characterize its behaviour in time.

Wavelet analysis allows us to represent a function in terms of a set of basic
functions, called wavelets, which are localized both in space and time. Here a
continuous function ψ(t), called the mother wavelet, is introduced. The corres-
ponding wavelet family is formed by the dilation and translation of the function
ψ(t):

ψj,k(t) = 2−j/2ψ(2−jt− k), (2)

where j and k are non-negative integers.
Depending upon the choice of the mother wavelet ψ(t), various wavelet

families are obtained. The wavelets introduced by Daubechies [1] are quite
frequently used for solving different problems. The Daubechies mother wavelet
is plotted in Fig. 2. These wavelets are differentiable and have a minimum size
support.

A shortcoming of the Daubechies wavelets is that they do not have an explicit
expression and therefore analytical differentiation or integration is not possible.
This complicates the solution of differential equations where integrals of the
following type ∫ b

a
G

(
t, ψi,k,

dψi,k

dt
,
d2ψi,k

dt2
, ...

)
dt (3)

must be computed (G is generally a nonlinear function). For calculating such
integrals the conception of connection coefficients is introduced. Calculation of
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Fig. 2. Daubechies mother wavelet of order J = 6.

these coefficients is very complicated and must be carried out separately for
different types of integrals (see, e.g., [2]). Besides, it can be done only for some
simpler types of nonlinearities (mainly for quadratic nonlinearity). This remark
holds also for other types of wavelets (such as Symlet, Coiflet, etc. wavelets).

The wavelet method was first applied to solving differential and integral
equations in the 1990s. A survey of early results in this field can be found in [3].
Lately the number of respective papers has greatly increased and it is not possible
to analyse them all here, but some are discussed in the following sections.

Due to the complexity of the wavelet solutions, some pessimistic estimates
exist. So Strang and Nguyen write in their text-book [4] “... the competition with
other methods is severe. We do not necessarily predict that wavelets will win”
(p. 394). Jameson [5] writes “... nonlinearities etc., when treated in a wavelet
subspace, are often unnecessarily complicated ... There appears to be no compel-
ling reason to work with Galerkin-style coefficients in a wavelet method” (p. 1982).

Obviously attempts to simplify solutions based on the wavelet approach are
wanted. One possibility is to make use of the Haar wavelet family.

In 1910 Alfred Haar introduced a function which presents a rectangular pulse
pair. After that various generalizations were proposed (a state of the art about Haar
transforms can be found in [6]). In the 1980s it turned out that the Haar function was
in fact the Daubechies wavelet of order 1. It is the simplest orthonormal wavelet
with compact support.

The Haar wavelet family is defined for t ∈ [0, 1] as follows:

hi(t) =





1 for t ∈ [ξ1, ξ2) ,
−1 for t ∈ [ξ2, ξ3] ,

0 elsewhere .
(4)

Here ξ1 = k/m , ξ2 = (k + 0.5)/m , ξ3 = (k + 1)m. The integer m = 2j

(j = 0, 1, ..., J) indicates the level of the wavelet; k = 0, 1, ..., m − 1 is the
translation parameter. The maximal level of resolution is J . The index i in (4) is
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calculated according to the formula i = m + k + 1; in the case m = 1, k = 0 we
have i = 2; the maximal value of i is i = 2M = 2J+1. It is assumed that the value
i = 1 corresponds to the scaling function for which h1 = 1 for t ∈ [0, 1]. The first
eight Haar functions are plotted in Fig. 3.

An essential shortcoming of the Haar wavelets is that they are not continuous.
The derivatives do not exist in the points of discontinuity, therefore it is not possible
to apply the Haar wavelets directly to solving differential equations.

There are at least two possibilities of ending this impasse. First, the piece-
wise constant Haar functions can be regularized with interpolation splines; this
technique has been applied by Cattani [7,8]. This greatly complicates the solution
process and the main advantage of the Haar wavelets – their simplicity – gets lost.

Another possibility was proposed by Chen and Hsiao [9,10]. They
recommended to expand into the Haar series not the function itself, but its
highest derivative appearing in the differential equation; the other derivatives (and
the function) are obtained through integrations. All these ingredients are then
incorporated into the whole system, discretized by the Galerkin or collocation
method.

Chen and Hsiao demonstrated the possibilities of their method by solving linear
systems of ordinary differential equations (ODEs) and partial differential equations
(PDEs). In [10] an optimal control problem with the quadratic performance index
is discussed.

In [11,12] Hsiao and Wang applied this method to solving singular bilinear and
nonlinear systems. Nonlinear stiff systems were examined in [13].

In [14] Hsiao demonstrated that the Haar wavelet approach is effective also
for solving variational problems. Of importance is also the paper [15] by Hsiao

Fig. 3. The first eight Haar functions.
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and Rathsfeld, in which wavelet collocation methods are applied to the boundary
element solution of the first-kind integral equations arising in acoustic scattering.

The aim of the present paper is to acquaint the readers with the possibilities
of the Haar wavelet method in solving integral and evolution equations. The
illustrating examples are taken from papers published by the author.

2. INTEGRATION OF HAAR WAVELETS

If we want to integrate differential equations by the Hsiao–Chen method, we
have to evaluate the integrals

pi,1(t) =
∫ t

0
hi(t)dt,

pi,ν(t) =
∫ t

0
pi,ν−1(t)dt, ν = 2, 3, ... .

(5)

Carrying out these integrations with the aid of (4), we find

pi,1(t) =





t− ξ1 for t ∈ [ξ1, ξ2] ,
ξ3 − t for t ∈ [ξ2, ξ3] ,

0 elsewhere;

pi,2(t) =





0 for t ∈ [0, ξ1] ,
1
2
(t− ξ1)2 for t ∈ [ξ1, ξ2] ,

1
4m2

− 1
2
(ξ3 − t)2 for t ∈ [ξ2, ξ3] ,

1
4m2

for t ∈ [ξ3, 1] ;

(6)

pi,3(t) =





0 for t ∈ [0, ξ1] ,
1
6
(t− ξ1)3 for t ∈ [ξ1, ξ2] ,

1
4m2

(t− ξ2) +
1
6
(ξ3 − t)3 for t ∈ [ξ2, ξ3] ,

1
4m2

(t− ξ2) for t ∈ [ξ3, 1] ;

pi,4(t) =





0 for t ∈ [0, ξ1] ,
1
24

(t− ξ1)4 for t ∈ [ξ1, ξ2] ,

1
8m2

(t− ξ2)2 − 1
24

(ξ3 − t)4 +
1

192m4
for t ∈ [ξ2, ξ3] ,

1
8m2

(t− ξ2)2 +
1

192m4
for t ∈ [ξ3, 1] .
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It is necessary to evaluate these functions for a prescribed J only once and save
them in the storage of the computer.

It is convenient to pass to the matrix formulation. For this purpose the interval
t ∈ [0, 1] is divided into 2M parts of equal length ∆t = 1/2M , where M = 2J .
The grid points are

t(l) = (l − 0.5)∆t, l = 1, 2, ..., 2M. (7)

The Haar coefficient matrix H is defined as H(i, l) = hi(l). The integral matrices
Pν have the elements Pν(i, l) = pi,ν(l).

Chen and Hsiao defined the integral matrix in a different way [5]. They
introduced the row vector

h(µ)(t) = [h1(t), h2(t), ..., hµ(t)], (8)

where µ = 2M = 2J+1. Now we have
∫ t

0
h(µ)(τ)dτ ≈ P(µ×µ)h(µ)(t). (9)

The square matrix P(µ×µ) is called the operational matrix of integration. Chen and
Hsiao showed that the following recursive formula holds:

P(2µ×2µ) =
1
4µ

[
4µP(µ×µ) −H(µ×µ)

H−1
(µ×µ) 0(µ×µ)

]
, (10)

whereas P(1×1) = 0.5.
Formulae (8)–(10) can be applied to solving first-order differential equations.

Higher-order equations have to be reduced to a system of first-order equations,
but this increases the order of the Haar matrices and may cause complications of
computational character.

3. INTEGRAL EQUATIONS

In this section application of wavelet methods to solution of integral equations
is discussed. The following types of integral equations are considered:
(i) Fredholm equation

u(x)−
∫ β

α
K(x, t, u(t))dt = f(x), x, t ∈ [α, β] , (11)

(ii) Volterra equation

u(x)−
∫ x

α
K(x, t, u(t))dt = f(x), x, t ∈ [α, β] , (12)
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(iii) integro-differential equation

au′(x) + bu(x)−
∫ x

0
K(x, t, u(t), u′(t))dt = f(x),

for u′(0) = u0, x, t ∈ [0, β].
(13)

If the kernel K is a linear function in regard of u(t) and u′(t), we have a linear
integral equation, otherwise the equation is nonlinear.

In recent years interest in the solution of integral equations by the wavelet
methods has greatly increased (we have counted more than 50 papers on this
topic). The first paper in this field according to our information is the one by
Alpert et al. [16], published in 1993. In the following papers mostly Fredholm
or Volterra equations are considered (consult, e.g., [17−20]). The Abel equation
is discussed in [18], the Hammerstein equation in [21,22], integro-differential
equations are considered in [23]. Different types of wavelets are applied, such as
Daubechies [17,20], Coifman [24], Cohen [25], and Legendre [18,26,27] wavelets,
and wavelets of B-splines [28]. In most papers linear integral equations are solved;
nonlinear equations are considered in [18,20,26,29].

The wavelet equations are discretized by the Galerkin or collocation method.
In the case of nonlinear problems we get for the wavelet coefficients a nonlinear
system of equations, which can be solved by the Newton method.

Now we pass to the solutions based on the Haar wavelets. Since the Haar
wavelets are defined only for the interval [0,1], we must first normalize Eqs (11)–
(13). This can be done by the change of the variables

x∗ = (x− α)/(β − α); t∗ = (t− α)/(β − α).

In [30] the Haar wavelet method is applied to solving different types of
linear integral equations (Fredholm, Volterra, integro-differential, weakly singular
integral equations), also the eigenvalue problem is solved. Nonlinear integral equa-
tions are considered in [31,32]. It is demonstrated that the recommended method
suits well for solving boundary value problems of ODEs.

Maleknejad and Mirzaee [33] applied the Haar wavelet method to solving linear
Fredholm integral equations of the second kind.

In the following the Haar wavelet approach is used to solve some types of
integral equations. The efficiency of the method is demonstrated by some numerical
examples; for getting the error estimates, problems for which the exact solution
uex(x) is known are considered. The accuracy of the results is estimated by the
error function

eJ = max
1≤l≤2M

(| u(xl)− uex(xl) |) . (14)

Computations carried out in [30] showed that the solutions obtained with the aid of
the collocation method are simpler than those got by the Galerkin method, besides,
their accuracy seems to be better. For this reason in the following the collocation
method is used. All calculations were made with the aid of MATLAB programs.
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(i) Linear Fredholm integral equation
Let us consider the equation

u(x)−
∫ 1

0
K(x, t)u(t)dt = f(x), x, t ∈ [0, 1] (15)

and seek the solution in the form

u(t) =
2M∑

i=1

aihi(t), (16)

where ai are the wavelet coefficients.
Putting this result into (15), we find

2M∑

i=1

aihi(x)−
2M∑

i=1

aiGi(x) = f(x), (17)

where

Gi(x) =
∫ 1

0
K(x, t)hi(t)dt. (18)

Satisfying (17) in the collocation points (7), we get a linear system of equations
for the coefficients ai:

2M∑

i=1

ai[hi(xl)−Gi(xl)] = f(xl), l = 1, 2, ..., 2M. (19)

More convenient is the matrix form of (16) and (19)

u = aH,

a(H −G) = F,
(20)

where
u = {u(tl)}, F = {f(xl)},

G = {Gi(xl)}.

Example 1. Let us take K = x + t, f(x) = x2. Equation (15) has the exact
solution

uex = x2 − 5x− 17
6

.

In the present case

Gi(x) =

{
x + 0.5 for i = 1,

− 1
4m2

for i > 1.

Computations were carried out for different values of J . The errors are shown in
Table 1.
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Table 1. Error function eJ for Eq. (15)

J 2M eJ

2 8 7.2E-2
3 16 1.7E-2
4 32 4.3E-3
5 64 1.3E-3

(ii) Nonlinear Volterra equation
Let us consider Eq. (12) in the normalized form α = 0, β = 1. Satisfying it

in the collocation points

x(l) = (l − 0.5)∆t, l = 1, 2, ..., 2M,

we obtain

u(xl) =
∫ xl

0
K(xl, t, u(t))dt = f(xl). (21)

The solution is again sought in the form (16). The system of equations for
evaluating the wavelet coefficients is now nonlinear and must be solved with the aid
of some numerical method. We have applied for this purpose the Newton method,
which brings us to the equation

2M∑

i=1

[
hi(l)−

∫ xl

0

∂K

∂ai
dt

]
∆ai

=
2M∑

i=1

{
−aihi(l) +

∫ xl

0
K

[
xl, t,

∑
aihi(xl)

]
dt

}
+ f(xl), (22)

where
∂K

∂ai
=

∂K

∂u
hi(t). (23)

According to (4), in each subinterval hi(t) is constant between two collocation
points. This enables us to calculate the integrals in (22) analytically. First we carry
out the computations for one subintegral (ts, ts+1). Summing up all these results,
we get the exact values of these integrals for the whole domain [0, x].

If some approximate solution a
(ν)
i is known, it can be corrected with the aid of

a
(ν+1)
i = a

(ν)
i + ∆a

(ν)
i , i = 1, 2, ..., 2M.

For details consult the paper [32].

36



Example 2. Solve the equation

u(x) =
1
2

∫ x

0
u(t)u(x− t)dt +

1
2

sinx, x ∈ [0, 1]. (24)

It has the exact solution u(x) = Ji(x), where the symbol Ji(x) denotes the Bessel
function of order 1.

In this case

K =
1
2
u(t)u(x− t),

∂K

∂ai
=

1
2
[u(x− t)hi(x− t)− u(t)hi(t)].

(25)

Error estimates (14) for this case are shown in Table 2.

(iii) Boundary value problems of ODEs
The method of solution described in this section is also very effective for

solving boundary value problems if we rewrite the equation in the form of an
integro-differential equation.

Consider the equation

u′′ = K(x, u, u′), x ∈ [0, 1] (26)

with the boundary conditions u(0) = A, u(1) = B.
By integrating (26) we get the integro-differential equation

u′(x) =
∫ x

0
K[t, u(t), u′(t)]dt + u′(0). (27)

We seek the solution in the form

u′(t) =
2M∑

i=1

aihi(t),

u(t) =
2M∑

i=1

aipi,1(t) + u(0),

(28)

where pi,1 denotes the integral (5).

Table 2. Error estimates for Eq. (24)

J 2M eJ

2 8 1.2E-3
3 16 1.3E-3
4 32 7.9E-4
5 64 4.3E-4
6 128 2.2E-4
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Satisfying the boundary conditions, we get u(1) = a1 + u(0) or

a1 = B −A. (29)

Since a1 is now prescribed, we have ∆a1 = 0; it means that the matrix of
system (22) must be replaced with a reduced matrix for which the first row and
column are deleted. Besides, (23) obtains the form

∂K

∂ai
=

∂K

∂u
pi,1(t) +

∂K

∂u′
hi(t). (30)

For further details consult again [33].

Example 3. Consider the boundary value problem

u′′ − uu′ =
1

4
√

(1 + x)3
− 1

2
, u(0) = 1, u(1) =

√
2, (31)

which has the exact solution
u =

√
1 + x.

By integrating (31) we obtain

u′(x) =
∫ x

0
uu′dt + u′(0)− 1

2
(1 + x) +

1
2
√

1 + x
(32)

with the initial condition u(0) = 1. It follows from boundary conditions that
a1 = u(1)− u(0) =

√
2− 1.

According to (28),

u′(0) =
2M∑

i=1

aihi(0), (33)

where

hi(0) =





1 if i = 1,
1 if i = 2j + 1, j = 0, 1, 2,
0 elsewhere.

Now
∂K

∂ai
= u′(t)pi,1(t) + u(t)hi(t), i = 2, 3, ..., 2M.

Some numerical calculations were carried out. The errors of the obtained results
are presented in Table 3.
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Table 3. Error estimates for Eq. (30)

J 2M eJ

2 8 1.1E-3
3 16 3.2E-4
4 32 8.6E-5
5 64 2.2E-5
6 128 5.6E-6

4. DIFFERENTIAL EQUATIONS

Papers on solving ODEs and PDEs by the wavelet methods are quite numerous
and it is not possible to cite all of them (some information can be found, e.g.,
in [34,35]). Let us restrict the research area. We shall mainly consider the solutions
based on the Haar wavelets. Our analysis has shown [34] that in solving nonlinear
ODEs the wavelet method has no preferences over the classical Runge–Kutta
method. For this reason we shall concentrate our analysis on PDEs.

An evolution process u = u(x, t), where x is the space coordinate and t is time,
is described by a PDE. The simplest equations are the diffusion (or heat) equation

∂u

∂t
= A

∂2u

∂x2
(34)

and the Burgers equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (35)

Due to simplicity they have proved to be a touchstone for new numerical methods
of solution. An outline of such papers can be found in [34,35].

There are several possibilities for solving PDEs by the wavelet method. First
we can introduce the two-dimensional wavelets

ψ(x, t) = ψ(x)⊕ ψ(t). (36)

Here ψ(x), ψ(t) are 2M -dimensional vectors, composed of the wavelets (2);
ψ(x, t) is a 2M × 2M matrix; the symbol ⊕ denotes Kronecker multiplication.

This approach has been applied in [36] for harmonic wavelets and in [37] for
the Haar wavelets. The shortcoming of it is that we have to deal with matrices of
high dimension (e.g., if the resolution level is J = 5, then M = 16 and the wavelet
coefficients matrix has 4096 elements!).
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An alternative method is applied in [9] to compute an electrical transmission
line and in [34] to solve the diffusion equation (34). The solution is sought in the
form

∂u

∂t
= a(x)H(t), (37)

where ∂u/∂t and a are 2M -component vectors, H is the Haar matrix. Integrating
(37) in regard of t and differentiating twice with respect to x, we get

u(x, t) = a(x)P1(t) + u(x, 0)E,

∂2u

∂x2
=

d2a

dx2
P1(t) +

d2u(x, 0)
dx2

E,
(38)

where P1 is integral matrix and E is a 2M -dimensional unit vector. Inserting
these results into (37), we get for a(x) a system of linear ODEs, which is solved
analytically with the aid of the matrix exponential function expm. This method is
quite effective, but applicable only in linear problems.

Now let us analyse the third method. Here the time interval t ∈ [0, T ] is divided
into N parts of equal length ∆t and ts = s∆t, i = 0, 1, 2, ..., N . Following the
suggestion of Chen and Hsiao [9], the highest derivative appearing in the evolution
equation is developed into the Haar series. This term can be written in the matrix
form

at(:)H(:, l), l = 1, 2, ..., 2M. (39)

It is assumed that at = const for the subinterval t ∈ [ts, ts+1]. This allows us
to integrate (39) in regard of time t. Integration in regard of the space variable
is carried out by the wavelet method. The evolution equation is satisfied by the
collocation or Galerkin method. Transfer to the next instant ts+1 is performed
by using some finite-difference method (e.g. by the Euler or Crank–Nicholson
method). This approach is applied in [38] for the Burgers equation and in [34] for
the diffusion equation. It should be mentioned that the method has also a weakness.
For calculating the wavelet coefficients we must invert some matrices, but they –
especially for higher-order equations – are often nearly singular. This is due to
the integral matrices Pν , which are calculated according to (6). Even in the case
of a small value J = 3 the determinants of these matrices are |P1 | = 2.7E−20,
|P2 | = 3.4E−49, |P3 | = 6.6E−81, |P4| = −2.2E−114. Here application of the
theory of sparse matrices [38] may be of some help. Another possibility is to divide
the space interval x ∈ [xmin, xmax] into N segments and apply the Haar wavelet
method to each segment (of course, some continuity conditions must be fulfilled on
the boundaries of these segments). This approach was applied in [34,39].

Below we shall consider the third method. The application of this method is
illustrated by solving the sine-Gordon equation.
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5. SINE-GORDON EQUATION

Let us consider the sine-Gordon equation

1
L2

∂2u

∂x2
− ∂2u

∂t2
= sin u x ∈ [0, 1], t ≥ 0, (40)

with the boundary and initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x),

u(0, t) = ϕ(x),
∂u

∂x
(0, t) = ψ(x).

Here f, g, ϕ, ψ are prescribed functions, L is a constant.
This equation has an analytical solitary wave solution

uex(x, t) = 4 arctan[exp(z)],

z = α(x− βt), α =
L√

1− L2β2
.

(41)

Solution of the sine-Gordon equation is discussed in many papers. According
to Science Direct, 368 papers have been published on this subject since 1996.
Among these we found only one paper [40] in which the wavelet method (Gaussian
wavelets) was applied.

Now let us present the solution based on the Haar wavelet method [35].
According to Chen and Hsiao [9], the solution of (40) is sought in the form

ü′′(x, t) =
2M∑

i=1

as(i)hi(x), t ∈ [ts, ts+1], x ∈ [0, 1]. (42)

This equation is integrated twice in regard of x in the limits [0, x] and in regard of
t in the limits [ts, ts+1]. By doing this we obtain

u̇′′(x, t) = (t− ts)
2M∑
i=1

as(i)hi(x) + u̇′′(x, ts),

u′′(x, t) =
1
2
(t− ts)2

2M∑

i=1

as(i)hi(x) + (t− ts)u̇′′(x, ts) + u′′(x, ts),

ü(x, t) =
2M∑
i=1

as(i)p2,i(x) + xü′(0, t) + ü(0, t),

u̇(x, t) = (t− ts)
2M∑
i=1

as(i)p2,i(x) + u̇(x, ts)

+x[u̇′(0, t)− u̇′(0, ts)] + u̇(0, t)− u̇(0, ts),

u(x, t) =
1
2
(t− ts)2

2M∑

i=1

as(i)p2,i(x) + u(x, ts)

+x[u′(0, t)− u′(0, ts)− (t− ts)u̇′(0, ts)]
+u(0, t)− u(0, ts)− (t− ts)u̇(0, ts).

(43)
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These results are discretized by replacing x → xl, t → ts+1. To simplify
the writing of the formulae, the matrix formulation is used and the notations
∆t = ts+1 − ts, u(l, s) = u(xl, ts) etc. are introduced. Taking into account
the initial conditions (40), Eqs (43) can be put into the form

u̇′′(l, s + 1) = ∆tas(:)H(:, l) + u̇′′(l, s),

u′′(l, s + 1) =
1
2
∆t2as(:)H(:, l) + u′′(l, s) + ∆tu̇′′(l, s),

ü(l, s + 1) = as(:)P2(:, l) + ϕ̈(s + 1) + xlψ̈(s + 1),

u̇(l, s + 1) = ∆tas(:)P2(:, l) + u̇(s, l) + ϕ̇(s + 1)− ϕ̇(1)

+xl[ψ̇(s + 1)− ψ̇(s)],

u(l, s + 1) =
1
2
∆t2as(:)P2(:, l) + u(l, s) + ∆tu̇(l, s) + ϕ(s + 1)

−ϕ(s)−∆tϕ̇(s) + xl[ψ(s + 1)− ψ(s)−∆tψ̇(s)].

(44)

Inserting these results into (40), we get a linear matrix equation for calculating the
wavelet coefficients as(:):

as(:)P2(:, l) =
1
L2

u′′(s, l) + sinu(s, l)− xlϕ̈(s + 1)− ψ̈(s + 1). (45)

Example 4. Computer simulation was carried out for t ∈ [10, 30], L = 20,
β = 0.025. If we want to get the classical solitary wave solution, we must take

f(x) = 4 arctan[exp(αx)],

g(x) = αV (αx),

ϕ(t) = 4 arctan[exp(−αβt)],

ψ(t) = −αβV (−αβt),

(46)

where
V (z) =

4ez

1 + e2z
.

The accuracy of our approach is estimated by the error function

v(t) =
1

2M
‖u(x, t)− uex(x, t)‖ =

1
2M

{2M∑

i=1

[
u(xi, t)− uex(xi, t)

]2
}1/2

. (47)

The calculations show that the function v(t) increases monotonically, therefore
v(tmax) is taken as the error estimate. Some computer results are presented in
Table 4 and Fig. 4.
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Table 4. Error estimate v(tmax) for Example 4

J 2M v v(tmax)

∆t = 0.005 ∆t = 0.001

4 32 0.051 0.038
5 64 0.018 0.009
6 128 0.0096 0.0036
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-200

-100
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200
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Fig. 4. Solution of the sine-Gordon equation for J = 6, ∆t = 0.001: (a) solution for the
instants t = 10 + 5i, i = 0, 1, 2, 3, 4; (b) wavelet coefficients at T = 30.

It follows from Table 4 that already in the cases J = 4 or J = 5 we get the
results which visually coincide with the exact solution. The time step was taken as
∆t = 0.005 or ∆t = 0.001; further decrease in ∆t gave no considerable effect. If
the accuracy of these results is insufficient, more precise results could be obtained
by the segmentation method proposed in [34].

We would like to draw attention to Fig. 4b. It follows from here that most of
the wavelet coefficients are zero (or near to zero) and the number of significant
coefficients is quite small. This is one of the reasons for rapid convergence of the
Haar wavelet series.
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6. CONCLUSIONS

The main goal of this paper was to demonstrate that the Haar wavelet method
is a powerful tool for solving different types of integral equations and partial
differential equations. The method with far less degrees of freedom and with
smaller CPU time provides better solutions than classical ones.

The main advantage of this method is its simplicity and small computation
costs, resulting from the sparsity of the transform matrices and the small number of
significant wavelet coefficients. The method is also very convenient for solving
the boundary value problems, since the boundary conditions are taken care of
automatically.
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Haari lainikute rakendamine integraal-
ja diferentsiaalvõrrandite lahendamiseks

Ülo Lepik

Oma lihtsuse tõttu on Haari lainikud leidnud järjest enam rakendusvõimalusi.
Muuhulgas on need osutunud väga efektiivseteks diferentsiaal- ja integraal-
võrrandite lahendamisel. Artiklis, mis suures osas baseerub autori uurimustel, on
püütud anda ülevaade probleemi tänapäevasest seisundist.

Tulemuste täpsuse hindamiseks on lahendatud hulk ülesandeid, mille puhul
on täpne lahend teada. Neist näidetest selgub, et Haari meetod on klassikaliste
lahendusviisidega täiesti konkurentsivõimeline. Eelisteks on aga meetodi lihtsus,
universaalsus, väike võrgupunktide arv ja lühike arvutiaeg.
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