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Abstract. A general theorem dealing with |C,α,β |k summability factors has been proved under weaker conditions.
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1. INTRODUCTION

A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence cn and
two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Let ∑an be a given infinite series with
partial sums (sn). We denote by uα,β

n and tα,β
n the nth Cesàro means of order (α,β ), with α + β > −1, of

the sequence (sn) and (nan), respectively, i.e., (see [3])

uα ,β
n =

1

Aα+β
n

n

∑
v=0

Aα−v
n−v Aβ

v sv,

tα,β
n =

1

Aα+β
n

n

∑
v=1

Aα−1
n−v Aβ

v vav, (1)

where Aα+β
n = O(nα+β ), α +β >−1, Aα+β

0 = 1, and Aα+β
−n = 0 for n > 0.

The series ∑an is said to be summable |C,α,β |k, k ≥ 1 and α +β >−1, if (see [5])

∞

∑
n=1

nk−1 | uα,β
n −uα,β

n−1 |k< ∞. (2)

Since tα,β
n = n(uα,β

n −uα,β
n−1) (see [5]), condition (2) can also be written as

∞

∑
n=1

1
n
| tα,β

n |k< ∞. (3)

If we take β = 0, then |C,α,β |k summability reduces to |C,α |k (see [6]) summability. Bor and
Srivastava [2] have proved the following theorem for |C,α |k summability factors of infinite series.
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Theorem A. Let (Xn) be an almost increasing sequence and there be sequences (βn) and (λn) such that

| ∆λn |≤ βn, (4)

βn → 0 as n→ ∞, (5)
∞

∑
n=1

n | ∆βn | Xn < ∞, (6)

| λn | Xn = O(1) as n→ ∞. (7)

If the sequence (uα
n ), defined by (see [8])

uα
n =

{ | tα
n |, α = 1

max1≤v≤n | tα
v |, 0 < α < 1

satisfies the condition
m

∑
n=1

1
n
(uα

n )k = O(Xm) as m→ ∞,

then the series ∑anλn is summable |C,α |k, k ≥ 1 and 0 < α ≤ 1.

2. THE MAIN RESULT

The aim of this paper is to generalize Theorem A under weaker conditions. For this we need the concept
of quasi δ -power increasing sequence. A positive sequence (γn) is said to be a quasi δ -power increasing
sequence if there exists a constant K = K(δ ,γ)≥ 1 such that

Knδ γn ≥ mδ γm (8)

holds for all n ≥ m ≥ 1. It should be noted that every almost increasing sequence is a quasi δ -power
increasing sequence for any nonnegative δ , but the converse is not true for δ > 0. Moreover, for any positive
δ there exists a quasi δ -power increasing sequence tending to infinity, but it is not almost increasing. In fact,
if we take (γn) is an almost increasing, that is, if

Acn ≤ γn ≤ Bcn

holds for all n with an increasing sequence (cn), then for any n≥ m≥ 1

γm ≤ Bcm ≤ Bcn ≤ B
A

γn

also holds, whence (8) follows obviously for any δ ≥ 0 with K = B
A . Thus any almost increasing sequence

is quasi δ -power increasing for any δ ≥ 0. We can show that the converse is not true. For this, if we take
γn = n−δ for δ > 0, then γn → 0. Thus it is obviously not an almost increasing sequence (see [7] for extra
details).

We shall prove the following theorem.

Theorem. Let (Xn) be a quasi δ -power increasing sequence for some 0 < δ < 1. If conditions (4)–(7) are
satisfied and the sequence (θ α,β

n ) defined by

θ α,β
n =

{
| tα,β

n |, α = 1, β >−1
max1≤v≤n | tα ,β

v |, 0 < α < 1, β >−1
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satisfies the condition
m

∑
n=1

1
n
(θ α,β

n )k = O(Xm) as m→ ∞,

then the series ∑anλn is summable |C,α,β |k for 0 < α ≤ 1, β >−1, α +β > 0, and k ≥ 1.

It should be noted that if we take β = 0 and (Xn) as an almost increasing sequence, then we get
Theorem A.

We need the following lemmas to prove our theorem.

Lemma 1 ([7]). Under the conditions on (Xn), (βn), and (λn) as taken in the statement of the theorem, the
following conditions hold:

nXnβn = O(1),
∞

∑
n=1

βnXn < ∞.

Lemma 2. If 0 < α ≤ 1, β >−1, and 1≤ v≤ n, then
∣∣∣∣∣

v

∑
p=0

Aα−1
n−p Aβ

p ap

∣∣∣∣∣≤ max
1≤m≤v

∣∣∣∣∣
m

∑
p=0

Aα−1
m−pAβ

p ap

∣∣∣∣∣.

The proof of Lemma 2 is similar to the proof of the Lemma of Bosanquet (see [4]) and we omit it.

3. PROOF OF THE THEOREM

Let (T α ,β
n ) be the nth (C,α,β ) mean of the sequence (nanλn). Then, by (1) we have

T α,β
n =

1

Aα+β
n

n

∑
v=1

Aα−1
n−v Aβ

v vavλv.

Applying first Abel’s transformation and then using Lemma 2, we have that
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1
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∆λv

v
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λn
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n

n

∑
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Aα−1
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v vav,

| T α,β
n | ≤ 1
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n
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| λn |
Aα+β

n

∣∣∣∣∣
n

∑
v=1
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n−v Aβ

v vav

∣∣∣∣∣

≤ 1

Aα+β
n

n−1

∑
v=1

Aα
v Aβ

v θ α,β
v | ∆λv |+ | λn | θ α,β

n

= T α,β
n,1 +T α,β

n,2 .

Since

| T α,β
n,1 +T α,β

n,2 |k≤ 2k(| T α,β
n,1 |k + | T α,β

n,2 |k),
in order to complete the proof of the Theorem, by (3) it is sufficient to show that

∞

∑
n=1

1
n
| T α,β

n,r |k< ∞ for r = 1,2.
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Whenever k > 1, we can apply Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1. We get that
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1
n
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1
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= O(1)
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= O(1)
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m+1
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1
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= O(1)
m
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v(α+β )kβv(θ α,β
v )k

∫ ∞

v

dx
x1+(α+β )k

= O(1)
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v=1

βv(θ α,β
v )k = O(1)

m
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v=1

vβv
1
v
(θ α,β
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= O(1)
m−1
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∆(vβv)
v
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1
p
(θ α,β
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+O(1)mβm

m
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1
v
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= O(1) as m→ ∞,

in view of hypotheses of the Theorem and Lemma 1.
Similarly we have that

m

∑
n=1

1
n
| λnθ α ,β

n |k = O(1)
m

∑
n=1

| λn |
n

(θ α,β
n )k

= O(1)
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n=1

∆ | λn |
n
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1
v
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v )k

+O(1) | λm |
m

∑
v=1

1
v
(θ α,β

v )k

= O(1)
m−1
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| ∆λn | Xn +O(1) | λm | Xm
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m−1

∑
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= O(1) as m→ ∞.

Therefore, we get that
∞

∑
n=1

1
n
| T α,β

n,r |k< ∞ for r = 1,2.

This completes the proof of the Theorem. For k = 1, the proof of the Theorem is obvious. If we take β = 0,
then we get a new result for |C,α |k summability factors. Also, if we take β = 0 and α = 1, then we have a
result dealing with |C,1 |k summability factors.
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Astmeliselt kasvavate jadade uuest rakendusest

Hüseyin Bor

On tõestatud teoreem menetlusega |C,α,β |k määratud summeeruvustegurite kohta varasemast nõrge-
matel eeldustel.


