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Abstract. A general theorem dealing with | C, ¢, B |, summability factors has been proved under weaker conditions.

Key words: absolute summability, power increasing sequences, summability factors.

1. INTRODUCTION

A positive sequence (b,) is said to be almost increasing if there exists a positive increasing sequence ¢, and
two positive constants A and B such that Ac, < b,, < Bc,, (see [1]). Let Y a, be a given infinite series with
partial sums (s,). We denote by uj, P and 1P the nth Cesaro means of order (a,B), with ¢+ > —1, of
the sequence (s,) and (nay,), respectively, i.e., (see [3])

u®P = e A,‘;‘ VAP,
%P HB ZAO‘ 'APva,, (1)

where AS™P = 0(n@tB), a+ B > —1, AT =1, and A%}P = 0 for n > 0.
The series Y aj, is said to be summable | C, o, B |,, k> 1 and o+ B > —1, if (see [5])

Z a1 %P — uff;ﬁl < eo. )
n=1
Since 1, wp _ n(u,? P uaﬁ) (see [5]), condition (2) can also be written as
Y 150 s e 3)
n=1 n

If we take B =0, then |C,a, B |, summability reduces to | C,o |, (see [6]) summability. Bor and
Srivastava [2] have proved the following theorem for | C, ¢ |, summability factors of infinite series.
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Theorem A. Let (X,,) be an almost increasing sequence and there be sequences (f3,) and (A,) such that

| A2 < B, “)
B.—0 as n— oo, 5)
inmm+n<m, ©)
Ixn\n);n:O(l) as o )

If the sequence (u), defined by (see [8])

a:{]ﬁL a=1

u
n maxj<,<, [t¥], 0<a<l1

satisfies the condition

- 1 ok
Z;(un) :O(Xm) as  m-— oo,

then the series Y. anAy, is summable | C,o |, k> 1 and 0 < o < 1.

2. THE MAIN RESULT

The aim of this paper is to generalize Theorem A under weaker conditions. For this we need the concept
of quasi §-power increasing sequence. A positive sequence (7;) is said to be a quasi d-power increasing
sequence if there exists a constant K = K(0,%) > 1 such that

Kn5 Yo = m5%n (8)

holds for all n > m > 1. It should be noted that every almost increasing sequence is a quasi d-power
increasing sequence for any nonnegative &, but the converse is not true for § > 0. Moreover, for any positive
0 there exists a quasi §-power increasing sequence tending to infinity, but it is not almost increasing. In fact,
if we take (7,) is an almost increasing, that is, if

Acy, <V, < Bey

holds for all n with an increasing sequence (c, ), then for any n > m > 1
B
Yn < Bey < Bey < X}’n

also holds, whence (8) follows obviously for any é > 0 with K = fi;. Thus any almost increasing sequence
is quasi 0-power increasing for any 6 > 0. We can show that the converse is not true. For this, if we take
% =n"% for § > 0, then y, — 0. Thus it is obviously not an almost increasing sequence (see [7] for extra
details).

We shall prove the following theorem.

Theorem. Let (X,) be a quasi §-power increasing sequence for some 0 < & < 1. If conditions (4)—(7) are
satisfied and the sequence (6, P ) defined by

et _ 1P, a=1,p>-1
! maxi<,<p | t3P |, O<a<1, B>—1



H. Bor: Application of power increasing sequences 207

satisfies the condition

Y (B =0() a5 m—es

then the series Y. anA, is summable | C,ot,B | forO< o <1, >—1,a+B >0,andk > 1.

It should be noted that if we take f = 0 and (X)) as an almost increasing sequence, then we get
Theorem A.
We need the following lemmas to prove our theorem.

Lemma 1 ([7]). Under the conditions on (X,), (Bu), and (A,) as taken in the statement of the theorem, the
following conditions hold:

nX,fn = 0(1),
Y BuXy < oo.
n=1

Lemma?2. [f0<a<1,B>—1,and 1 <v<n,then

< max
1<m<vy

Pa, ZA“ 1ABq,

The proof of Lemma 2 is similar to the proof of the Lemma of Bosanquet (see [4]) and we omit it.

3. PROOF OF THE THEOREM

Let (7, P ) be the nth (C, o, ) mean of the sequence (na,A,). Then, by (1) we have

1 & oo
TP = “aip Z;Agvafvavlv.
bl g

Applying first Abel’s transformation and then using Lemma 2, we have that

A’ n
) — 1 n -1
TP = (HBE Mv§ A% 1AB pa, + e VZIA,?_VAEWV,

Ap TS
TP < E \Alv| A“ 1Aﬁ a —l—M En A% 1 AByq
n — OH-ﬁ pp p Ag_;,_ﬁ = n—y iy V¥V

1 '« Bpa,p a,B

< AeiP EZIAVAV 0, |AAy | + | An | O

_ B o,p
Tn,l + Tn,2 .
Since
TP P2 T,
in order to complete the proof of the Theorem, by (3) it is sufficient to show that
|

L,

n=1

|Tn‘f‘;ﬁ F<oo for r=1,2.
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Whenever k > 1, we can apply Holder’s inequality with indices k and k', where % + % = 1. We get that

m+1 1 ap m+1 1 1 o B af k
Lo < Y- Y ZA ATOP AL,
n=2 n=2 1

m+1 1 k=1
- 0<1>22M{Zv""vﬁ"ﬁ (67%) } {m}

m m+1 1
= 0(1) Y v Prp, (01 F) ;lm

m = dx
= 0(1) Zv(a+ﬁ)kﬁv(93’ﬁ)k/v ETCEOT

m

= () Y B(0F) = 0(1) Y v (08

m—1

— oY awg) Y ;<e,?ﬁ>k

v=1 p=1

0(1mp Y. | (0

m—1 m—1

= O(1) Y v[AB [ X,+0(1) Y BX,+O(1)mB,X,,
v=1 v=I

= O(1) as m— oo,

in view of hypotheses of the Theorem and Lemma 1.
Similarly we have that

Y L iaeer = oy Pl geny
n=1 n=1
- miAlMZ (67F)F
QIEAD Tk

m—1
= O(I)Z ‘A/ln’Xn_"O(l)’}Lm‘Xm

n=1

m—1
= 0(1) Y BuXa+O0(1) | A | Xon
n=1

= O(1) as m— oo,

Therefore, we get that

|
Y -1 <o for r=1,2.

n=1"
This completes the proof of the Theorem. For k = 1, the proof of the Theorem is obvious. If we take 8 =0,
then we get a new result for | C, & |, summability factors. Also, if we take § =0 and o = 1, then we have a
result dealing with | C, 1 |, summability factors.
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AN o

=

Astmeliselt kasvavate jadade uuest rakendusest
Hiiseyin Bor

On tdestatud teoreem menetlusega | C, ¢, B |, madratud summeeruvustegurite kohta varasemast norge-
matel eeldustel.



