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A method for solving classical smoothing problems with obstacles
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Abstract. We study how to reduce the smoothing problem with obstacles to the smoothing problem with weights. A system
connecting deviations of the solution from given values and weights is established. An algorithm for solving this equation is
proposed and illustrated by examples.
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1. INTRODUCTION

Smoothing problems have been in the field of interest of researchers already for more than 40 years. Both the
smoothing problem with obstacles and the problem with weights are problems of reconstructing a function
according to some discrete inexact data. Solving a smoothing problem with weights is an easy task: the
problem reduces to a linear system of equations. However, in practice the weights are not known. Hence,
the smoothing problem with obstacles, where the error bounds on a finite set of knots are given, is much
more practical. For the problem with obstacles necessary and sufficient conditions describing the solution
are known (see, e.g., [1]) but finding an algorithm to solve this problem is still an open problem. A natural
method of adding–removing knots, proposed in [1], can lead to a cycle as shown in [2].

It is known that if the Lagrangian associated to the smoothing problem with obstacles has a saddle
point, then its first component is a solution of this problem and the second component defines the weights
in the equivalent problem with weights. We have shown [Leetma, E. and Oja, P., unpubl. notes] that the
Lagrangian associated to the classical smoothing problem with obstacles always has a saddle point, meaning
that there exists an equivalent smoothing problem with weights. The equivalence of problems with obstacles
and weights has been studied for example in [3] (univariate case) and in [4] (multivariate case). In [4] the
special case of problem with weights is considered where all the weights are positive. But the problem
with obstacles has an equivalent problem with positive weights only in an exceptional case: when all the
knots in the solution of the smoothing problem with obstacles are active. Under this restriction an equation
connecting deviations of the solution from the given values and weights was derived in [4]. No attempts
have been made to solve this equation.

In this paper we derive an equation connecting deviations and weights in the classical case where the
weights are non-negative. We propose a method for solving this equation. The effectiveness of the method
has not yet been studied, but as our first example shows, the problem from [2], where the method of adding–
removing knots is cycling, can be solved by this method.



198 Proceedings of the Estonian Academy of Sciences, 2009, 58, 4, 197–204

2. NOTATION AND PRELIMINARIES

For given integers r and n, 2r > n ≥ 1, let us denote by L(r)
2 (Rn) the space of functions defined on Rn

having all partial (distributional) derivatives of order r in L2(Rn). Define the operator T : L(r)
2 (Rn) →

L2(Rn)× . . .×L2(Rn) as

T f =

{√
r!
α!

Dα f

∣∣∣∣∣|α|= r

}
,

where α = (α1, . . . ,αn), αi ≥ 0, α! = α1! . . .αn! and |α|= α1 + . . .+αn. We also need the product

(T f ,T g) = ∑
|α|=r

r!
α!

∫

Rn

Dα f DαgdX , f ,g ∈ L(r)
2 (Rn),

and the corresponding seminorm ‖T f‖=
√

(T f ,T f ).
A function of the form

S(X) = P(X)+∑
i∈I

diG(X−Xi),X ∈ Rn, (1)

with P ∈Pr−1,
∑
i∈I

diQ(Xi) = 0 ∀Q ∈Pr−1, (2)

I a finite set and arbitrary Xi ∈ Rn, Xi 6= X j for i 6= j, is called a natural spline. Here Pr−1 is the space
of polynomials of degree not exceeding r− 1 and G is the fundamental solution of the operator ∆r, where
∆ is the n-dimensional Laplace operator. It is known that for n odd, G(X) = cnr‖X‖2r−n and for n even,

G(X) = cnr‖X‖2r−n log‖X‖ with some constants cnr > 0 and ‖X‖ =
√

x2
1 + . . .+ x2

n. It is also known that

any natural spline belongs to L(r)
2 (Rn).

For given sets of indexes I0, I1, I0∩ I1 = /0, I0∪ I1 = I, obstacles εi > 0, i∈ I1, pairwise distinct datapoints
Xi ∈ Rn, i ∈ I, and values zi ∈ R, i ∈ I, define

Ω = { f ∈ L(r)
2 (Rn) | f (Xi) = zi, i ∈ I0, | f (Xi)− zi| ≤ εi, i ∈ I1}.

We consider the minimization problem
min
f∈Ω

‖T f‖2 (3)

as the classical smoothing problem with obstacles.
Assume that the zero-valued interpolation problem with polynomials from Pr−1 in the knots Xi, i ∈ I,

possesses a unique solution. The solution of problem (3) exists and is a natural spline. The next proposition
(see [1]) characterizes the solution of problem (3).

Proposition 1. A natural spline S of the form (1) such that S ∈ Ω is a solution of problem (3) if and only if
the coefficients di, i ∈ I1, of S satisfy the conditions

di = 0, if |S(Xi)− zi|< εi,

(−1)rdi ≥ 0, if S(Xi) = zi− εi, (4)
(−1)rdi ≤ 0, if S(Xi) = zi + εi.

For the uniqueness of the solution it is sufficient that the interpolation problem with polynomials

P(Xi) = 0, i ∈ I0, P ∈Pr−1,

has only the solution P = 0.
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For given sets of indexes I0, I1, I0 ∩ I1 = /0, I0 ∪ I1 = I, weights wi ≥ 0, i ∈ I1, pairwise distinct points
Xi ∈ Rn, i ∈ I, and values zi ∈ R, i ∈ I, define

Ω0 = { f ∈ L(r)
2 (Rn) | f (Xi) = zi, i ∈ I0}

and
J( f ) = ‖T f‖2 + ∑

i∈I1

wi| f (Xi)− zi|2, f ∈Ω0.

We consider the minimization problem

min
f∈Ω0

J( f ) (5)

as the classical smoothing problem with weights.
Assume that the zero-valued interpolation problem with polynomials from Pr−1 in the knots Xi,

i ∈ I0 ∪{ j ∈ I1 | w j 6= 0}, possesses a unique solution. According to the next proposition the solution of
problem (5) exists and is a natural spline of form (1).

Proposition 2. There exists only one natural spline S of form (1) satisfying

(−1)rdi +wiS(Xi) = wizi, i ∈ I1,
S(Xi) = zi, i ∈ I0,

(6)

and this spline is the unique solution of the smoothing problem with weights.

The proof of Proposition 2 is a slight modification of that of Proposition 1 in [4], where the case wi > 0,
i ∈ I1, is treated.

Problems (3) and (5) are equivalent, i.e. for any problem (3) there exists a problem (5) such that their
solutions coincide (I0, I1, Xi and zi do not change) and vice versa. In the next section an equation connecting
equivalent problems with obstacles and weights will be derived.

The reader can find more general considerations about smoothing problems with obstacles and weights,
e.g., in [1,5–7, Leetma, E. and Oja, P., unpubl. notes].

3. AN EQUATION CONNECTING SMOOTHING PROBLEMS WITH OBSTACLES AND
WEIGHTS

For any problem (3) the knot values S(Xi), i ∈ I1, are considered unknown, and so are the weights wi,
i ∈ I1, in equivalent smoothing problem (5). In this section we will derive an equation connecting the
deviations zi− S(Xi), i ∈ I1, to the weights wi, i ∈ I1. This equation will also contain the coefficients di,
i ∈ I0, corresponding to the interpolation knots.

Let us define the matrix W = (wi j)i, j∈I with wii = wi for i ∈ I1, wii = 1 for i ∈ I0, and wi j = 0 for i 6= j.
We also use the notations z = (zi)i∈I and s = (S(Xi))i∈I , then equations (6) can be written as

(−1)rd = W (z− s+(−1)rχd), (7)

χ : R|I|→ R|I| being the projection such that (χd)i = di, i ∈ I0, (χd)i = 0, i ∈ I1, and the notation |I| means
the number of elements in I.

Let Xβ j , j ∈ J, be a basis in Pr−1. Then natural spline (1) may be presented as

S(X) = ∑
j∈J

c jXβ j +∑
i∈I

diG(X−Xi).
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By setting c = (c j) j∈J , d = (di)i∈I , V = (Xβ j
i )i∈I, j∈J , and G = (G(Xi−X j))i, j∈I , we get

s = V c+Gd (8)

with d ∈ kerV T as an equivalent form for (2). From (7) and (8) we obtain

(−1)rd +WV c+WGd = Wz+(−1)rχd. (9)

Take an arbitrary symmetric regular |I|× |I| matrix A and define U = (WV )|(ker(WV ))⊥ and D = A−1U .
Note that WV : R|J| → R|I| may not be injective but, according to R|J| = ker(WV )⊕ (ker(WV ))⊥, the
operator U : (ker(WV ))⊥→R|I| is injective. Define the operator Π :R|I|→R|I| with Π = E−D(DT D)−1DT ,
where E is the identity operator. Using the ideas from [4], it can be shown that Π2 = Π, ranΠ = AkerUT

and 〈Πx,y〉 = 〈x,Πy〉 for all x,y ∈ R|I|, which means that Π is an orthogonal projection onto the subspace
AkerUT .

Let us show that ΠA−1WV c = 0 for all c ∈R|J|. Actually, it is sufficient to show that ΠA−1WV c = 0 for
all c ∈ (ker(WV ))⊥, which is equivalent to

A−1WV c ∈ kerΠ = kerΠ∗ = (ranΠ)⊥ = (AkerUT )⊥ ∀c ∈ (ker(WV ))⊥.

But this holds because for all x ∈ kerUT we have

〈A−1WV c,Ax〉= 〈WV c,x〉= 〈Uc,x〉= 〈c,UT x〉= 0.

Use the notation ε̃ = (ε̃i)i∈I , where

ε̃i = zi−S(Xi), i ∈ I1,

ε̃i = (−1)rdi = (−1)rdi + zi−S(Xi), i ∈ I0.

Then equation (7) can be written as
(−1)rd = W ε̃. (10)

Now, applying ΠA−1 to (9) and taking (10) into account, we obtain

(ΠA−1 +(−1)rΠA−1WG−ΠA−1χ)W ε̃ = ΠA−1Wz. (11)

This equation connects the deviations ε̃i, i ∈ I1, and coefficients ε̃i, i ∈ I0, of the solution of the smoothing
problem with obstacles to the weights of the equivalent smoothing problem with weights.

Note that the condition ker(WV ) = {0} is equivalent to the assumption about unique solvability of the
zero-valued interpolation problem with polynomials from Pr−1 in the knots Xi, i ∈ I0 ∪{ j ∈ I1 | w j 6= 0}.
In practice usually ker(WV ) = {0} and thus U = WV . For example, in the case of cubic splines (n = 1,
r = 2) it is sufficient that there are at least two non-zero weights for ker(WV ) being trivial. Assuming
ker(WV ) = {0}, we propose a method for finding the weights in problem (5) equivalent to a given
problem (3).

4. A METHOD FOR FINDING WEIGHTS

In equation (11) both W and ε̃ are unknown. For our method we take wi = 1, i ∈ I, as guess values. Define
N = {i ∈ I1 | wi = 0} as the set of indexes corresponding to inactive obstacle knots. At the beginning we
have N = /0.

Step 1. (The step of finding ε̃ .) Using (10), equation (11) can be written as

(−1)r(ΠA−1 +(−1)rΠA−1WG−ΠA−1χ)d = ΠA−1Wz.
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Adding the conditions V T d = 0, we have a system of |I|+ |J| linear equations with |I| unknowns di, i ∈ I.
Let us solve this system by the standard least squares method. Even if we assume the sufficient uniqueness
condition of the solution for the interpolation problem with polynomials as in Proposition 1, it may happen
that this system has more than one least squares solution. Then we take the solution with minimal Euclidean
norm. Based on (10), determine

ε̃i =
(−1)rdi

wi
, i ∈ I \N.

If N 6= /0, we proceed to step 2, otherwise to step 3.

Step 2. (The step of computing missing ε̃ .) Solve the interpolation problem

S(Xi) = zi− ε̃i, i ∈ I1 \N,

S(Xi) = zi, i ∈ I0,

or equivalently, the linear system

∑
j∈J

c jX
β j
k + ∑

i∈I\N
diG(Xk−Xi) = zk− ε̃k, k ∈ I1 \N,

∑
j∈J

c jX
β j
k + ∑

i∈I\N
diG(Xk−Xi) = zk, k ∈ I0,

∑
i∈I\N

diX
β j
i = 0, j ∈ J,

with (c j) j∈J and (di)i∈I\N as unknowns. In the case of multiple solution we continue with that of minimal
Euclidean norm. We also take di = 0, i ∈ N. The unknown deviations will be computed as

ε̃k = zk−S(Xk) = zk−∑
j∈J

c jX
β j
k − ∑

i∈I\N
diG(Xk−Xi), k ∈ N.

If the step preceding this step was step 3, we also need to evaluate the coefficients

ε̃i = (−1)rdi, i ∈ I0.

Proceed to step 3.

Step 3. (The step of correcting ε̃ .) For the solution, any number |ε̃i| should not exceed the obstacle values
εi, i ∈ I1, and |ε̃i| corresponding to the active knots should not be less than εi, i ∈ I1 \N. Thus, define the set
of indexes corresponding to the deviations that need to be corrected as

K = {i ∈ I1 | |ε̃i|> εi}∪{i ∈ I1 \N | |ε̃i|< εi}.
If K = /0, we proceed to step 4. Otherwise for i ∈ K we take ε̃i = sign(ε̃i)εi, if ε̃i 6= 0. We include the knots
with ε̃i = 0, i ∈ K, to the set of inactive knots by defining the new set N as

N = ({i ∈ I1 | wi = 0}\K)∪{i ∈ K | ε̃i = 0}.
If N∪ I0 6= /0, we continue at the beginning of step 2, otherwise we proceed to step 4.

Step 4. (The step of finding the weights.) Since equation (11) is nonlinear with respect to the weights wi,
i ∈ I, we compute the corresponding weights using equations (6). For the interpolation knots take wi = 1,
i ∈ I0. For the obstacle knots take

wi =
(−1)rdi

ε̃i
if ε̃i 6= 0, i ∈ I1,

wi = 0 if ε̃i = 0, i ∈ I1.

If all the weights are nonnegative, i.e., wi ≥ 0, i ∈ I, we have got the solution. Otherwise, define
N = {i ∈ I1 | wi ≤ 0}, take wi = 0, i ∈ N, and continue at the beginning of step 1.
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5. EXAMPLES

In [2] we presented a counterexample to the method of adding–removing knots proposed in [1]. In this paper
in the first example we use the same data and show how our method solves this problem. The implementation
of the method goes via equation (11) and we take as A the identity matrix in both following examples.

Example 1. Let us take n = 1, r = 2 (cubic splines), and knots x1 = 1.5, x2 = 2, x3 = 3, x4 = 4, x5 = 6, x6 = 7.
We pose obstacle conditions |S(x1)−1.7| ≤ 0.7, |S(x2)−2.7| ≤ 0.7, |S(x3)−4.2| ≤ 0.7, |S(x4)−5.1| ≤ 0.7,
interpolation conditions S(x5) = 4.7, S(x6) = 4.8, and look for the solution of problem (3).

The working process of our algorithm is presented in Table 1. The first line contains the guess values
of weights. In step 1 we compute the values ε̃i, i ∈ I \N, given in the second line. Since at the beginning
N = /0, we continue from step 3 and correct the deviations ε̃i, i ∈ K = {1,2,3,4}. At the end of step 3 the
set of indexes corresponding to inactive knots is still empty, i.e. N = /0, but since I0 6= /0, we proceed from
step 2. Compute the coefficients ε̃i, i ∈ I0 = {5,6}. Now K = /0 and we proceed to step 4. The computed
weights and the corrected weights with indexes from N = {1,2,4} are presented in Table 1 on lines 5 and 6.
Line 7 contains values of ε̃i, i ∈ I \N, computed in step 1 and so on.

Take notice of lines 14 and 15. In step 3 the deviations ε̃3 and ε̃4 are corrected because they exceed
the obstacle value 0.7, the deviation ε̃2 is corrected because at this moment the point x2 is an active knot.
Only the deviation ε̃1 is left unchanged and the index set corresponding to the inactive knots is defined as
N = {1}. Despite that in the next steps the deviation ε̃1 is corrected and the knot x1 has been taken into the
set of active knots.

Table 1. Values of ε̃i and wi computed by the algorithm (Example 1)

Guess values wi 1.000 1.000 1.000 1.000 1.000 1.000
Step 1 ε̃i −0.222 0.001 0.168 0.343 −0.482 0.193
Step 3 ε̃i −0.700 0.700 0.700 0.700 −0.482 0.193
Step 2 ε̃i −0.700 0.700 0.700 0.700 −0.176 0.046
Step 4 wi −7.581 −12.885 6.513 −1.023 1.000 1.000

wi 0.000 0.000 6.513 0.000 1.000 1.000
Step 1 ε̃i −0.001 0.033 −0.025
Step 2 ε̃i −2.215 −1.310 −0.001 0.710 0.033 −0.025
Step 3 ε̃i −0.700 −0.700 −0.700 0.700 0.033 −0.025
Step 2 ε̃i −0.700 −0.700 −0.700 0.700 0.729 −0.256
Step 4 wi −0.180 2.682 −5.902 −4.077 1.000 1.000

wi 0.000 2.682 0.000 0.000 1.000 1.000
Step 1 ε̃i −0.011 0.149 −0.119
Step 2 ε̃i −0.683 −0.011 0.843 1.156 0.149 −0.119
Step 3 ε̃i −0.683 −0.700 0.700 0.700 0.149 −0.119
Step 2 ε̃i −1.773 −0.700 0.700 0.700 −0.513 0.159
Step 3 ε̃i −0.700 −0.700 0.700 0.700 −0.513 0.159
Step 2 ε̃i −0.700 −0.700 0.700 0.700 −0.629 0.197
Step 4 wi 6.719 −12.013 −8.181 3.504 1.000 1.000

wi 6.719 0.000 0.000 3.504 1.000 1.000
Step 1 ε̃i −0.031 0.175 −0.685 0.281
Step 2 ε̃i −0.031 0.120 0.132 0.175 −0.685 0.281
Step 3 ε̃i −0.700 0.120 0.132 0.700 −0.685 0.281
Step 2 ε̃i −0.700 −0.191 0.418 0.700 −0.191 0.051
Step 4 wi 0.130 0.000 0.000 0.330 1.000 1.000



E. Leetma: Solving smoothing problems with obstacles 203

By the end of the algorithm we have w2 = w3 = 0. Thus, the solution

S(x) = c1 + c2x+
6

∑
i=1

di|x− xi|3 (12)

has two inactive knots, x2 and x3, with the corresponding coefficients d2 = d3 = 0. The values of other
coefficients are c1 = 2.448, c2 = 0.554, d1 =−0.015, d4 = 0.038, d5 =−0.032, and d6 = 0.009. Note that,
for cubic splines, G(x) = |x|3/12 and the coefficients of S in representation (1) are multiples of the di used
in (12). In the next example the presented coefficients di also differ from these in representation (1) by cnr
times.

Example 2. Let us take n = 2, r = 2, knots X1 = (1,1), X2 = (1,2), X3 = (1,3), X4 = (2,1), X5 = (2,2),
X6 = (2,3), X7 = (3,1), X8 = (3,2), X9 = (3,3), and values z1 = 1, z2 = 1, z3 = 2, z4 = 3, z5 = 4, z6 = 4,
z7 = 3, z8 = 1, z9 = 4. Pose obstacle conditions |S(Xi)− zi| ≤ 0.5, i = 1, . . . ,n, and look for the solution of
problem (3).

The working process of our algorithm is described in Table 2.
The solution

S(x,y) = c1 + c2x+ c3y+
9

∑
i=1

di
(
(x− xi)2 +(y− yi)2) log

√
(x− xi)2 +(y− yi)2 (13)

has four inactive knots with corresponding coefficients d1 = d3 = d4 = d6 = 0. The other coefficients
in representation (13) are c1 = 0.529, c2 = 0.634, c3 = 0.500, d2 = −0.697, d5 = 1.393, d7 = 0.507,
d8 =−1.711, and d9 = 0.507. Note that we used here the notations X = (x,y) and Xi = (xi,yi).

Table 2. Values of ε̃i and wi computed by the algorithm (Example 2)

Guess values wi 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Step 1 ε̃i −0.122 −0.403 −0.122 0.263 0.768 0.263 0.260 −1.167 0.260
Step 3 ε̃i −0.500 −0.500 −0.500 0.500 0.500 0.500 0.500 −0.500 0.500
Step 4 wi −0.271 1.699 −0.271 −0.431 3.176 −0.431 1.167 3.491 1.167

wi 0.000 1.699 0.000 0.000 3.176 0.000 1.167 3.491 1.167
Step 1 ε̃i −0.426 0.456 0.447 −0.507 0.447
Step 2 ε̃i −0.307 −0.426 −0.307 0.306 0.456 0.306 0.447 −0.507 0.447
Step 3 ε̃i −0.307 −0.500 −0.307 0.306 0.500 0.306 0.500 −0.500 0.500
Step 2 ε̃i −0.369 −0.500 −0.369 0.331 0.500 0.331 0.500 −0.500 0.500
Step 4 wi 0.000 1.393 0.000 0.000 2.786 0.000 1.014 3.421 1.014
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Meetod klassikalise tõketega silumisülesande lahendamiseks

Evely Leetma

On käsitletud mitme muutuja juhul klassikalise tõketega silumisülesande lahendamist kaaludega
silumisülesandele taandamise teel. On tuletatud võrrand, mis seob tõketega ülesande lahendi hälbeid ette-
antud väärtustest sõlmedes ja ekvivalentse ülesande kaalusid. On välja pakutud iteratiivse iseloomuga algo-
ritm ja esitatud kaks näidet ühe ning kahe muutuja juhul, kus lõpliku arvu sammudega õnnestub leida otsi-
tavad kaalud ekvivalentses ülesandes ja ühtlasi algse tõkkeülesande lahend.


