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A global, dynamical formulation of quantum confined systems
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Abstract. A brief review of some recent results on the global self-adjoint formulation of systems with boundaries is presented. We
concentrate on the 1-dimensional case and obtain a dynamical formulation of quantum confinement.
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1. INTRODUCTION

Let H0 : D(H0) ⊂ L2(IRd) −→ L2(IRd) be a self-adjoint (s.a.) Hamiltonian operator defined on the
domain D(H0) and describing the dynamics of a d-dimensional quantum system. Let us also consider
the decomposition IRd = Ω∪Ωc, where Ω is an open set and Γ = Ω∩Ωc is the common boundary of the
two open sets Ω1 = Ω and Ω2 = Ωc.

To obtain a confined version (for instance, to Ω1) of the system described by H0, the standard approach
is to determine the s.a. realizations of the operator H0 in L2(Ω1). It is well known, however, that this
formulation displays several inconsistencies [1–3], the main issues being the ambiguities besetting the
physical predictions (when there are several possible s.a. realizations of H0 in L2(Ω1)), the lack of s.a.
formulations of some important observables in L2(Ω1), and the difficulties in translating this approach to
other (non-local) formulations of quantum mechanics, like the deformation formulation [4]. These problems
are well illustrated by textbook examples [1,4,5].

Our aim here is to present an alternative approach to quantum confinement. This formulation consists in
determining all s.a. Hamiltonian operators H : D(H) ⊂ L2(IRd) −→ L2(IRd), defined on a dense subspace
D(H) of the global Hilbert space L2(IRd), which dynamically confine the system to Ω1 (or Ω2) while
reproducing the action of H0 in an appropriate subdomain. More precisely, let PΩk be the projector operator
onto Ωk, k = 1,2, i.e.

PΩk ψ = χΩk ψ , ψ ∈ L2(IRd), (1)

where χΩk is the characteristic function of Ωk: χΩk(x) = 1 if x ∈Ωk and χΩk(x) = 0, otherwise. Our aim is
to determine all linear operators H : D(H)⊂ L2(IRd)→ L2(IRd) that satisfy the following three properties:

(i) H is s.a. on L2(IRd);
(ii) if ψ ∈D(H), then PΩk ψ ∈D(H) and [PΩk ,H]ψ = 0, k = 1,2;

(iii) Hψ = H0ψ if ψ ∈D(H0) is an eigenstate of PΩk .
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Moreover, for the 1-dimensional case, we want to recast the operators H in the form H = H0 + BBC,
where BBC is a distributional boundary potential (that may depend on the particular boundary conditions
satisfied by the domain of H) and H is s.a. on its maximal domain. This formulation is global, because
the system is defined in L2(IRd), and the confinement is dynamical, i.e. it is a consequence of the initial
state and of the Hamiltonian H. Indeed, from (i) and (ii) it follows that PΩk commutes with all the spectral
projectors of H and so also with the operator exp{iHt} for t ∈ IR. Hence, if ψ is an eigenstate of PΩk , it will
evolve to exp{iHt}ψ , which is again an eigenstate of PΩk with the same eigenvalue. In other words, PΩk is
a constant of motion and a wave function confined to Ω1 (or to Ω2) will stay so forever.

The problem of determining a dynamical formulation of quantum confinement can be addressed from
the point of view of the study of s.a. extensions of symmetric restrictions [1,6–8] and is closely related with
the subjects of point interaction Hamiltonians [7,9–11] and surface interactions [12]. Our results may be
useful in this last context as well as for the deformation quantization of systems with boundaries [4].

In this paper we shall provide a concise review of the solutions to the above problems. The reader
should refer to [13] for a detailed presentation, including proofs of the main theorems, the extension of the
boundary potential formulation to higher dimensions, and some applications to particular systems.

2. CONFINING HAMILTONIANS DEFINED ON L2(IRd)

We start by introducing some relevant notation. Let X ,Y ⊂V be two subspaces of a vector space V such that
X ∩Y = {0}, then their direct sum is denoted by X ⊕Y . Let now A,B be two linear operators with domains
D(A),D(B)⊂ L2(IRd) such that D(A)∩D(B) = {0}, then the operator A⊕B is defined by:

A⊕B :





D(A⊕B) = D(A)⊕D(B) = {ψ ∈ L2(IRd) : ψ = ψ1 +ψ2, ψ1 ∈D(A), ψ2 ∈D(B)}

(A⊕B)ψ = Aψ1 +Bψ2, ∀ψ ∈D(A⊕B).
(2)

For simplicity let us assume that D(Ωk)⊂ L2(Ωk)∩D(H0), k = 1,2 (where D(Ωk) is the space of infinitely
smooth functions t : IRd → C with support on a compact subset of Ωk) and let us define the operators:

HS
k : D(Ωk)−→ L2(Ωk), φ −→ HS

k φ = H0φ , k = 1,2, (3)

which are symmetric. Let also HS†

k be the adjoint of HS
k .

Our main result characterizes the operators H : D(H)⊂ L2(IRd)→ L2(IRd), associated to a s.a. H0, and
satisfying properties (i)–(iii).

Theorem 1. Let H0 be s.a. on L2(IRd) and such that D(H0)⊃D(Ω1)∪D(Ω2) and [H0,PΩk ]ψ = 0, k = 1,2,
∀ψ ∈ D(Ω1)∪D(Ω2). An operator H satisfies the defining properties (i)–(iii) iff it can be written in the
form H1⊕H2 for some H1,H2 s.a. extensions of the restrictions (3). Moreover, all operators H are s.a.
extensions of HS

1 ⊕HS
2 and s.a. restrictions of HS†

1 ⊕HS†

2 .

The condition (stated in the theorem) that [H0,PΩk ]ψ = 0, ∀ψ ∈ D(Ω1)∪D(Ω2), and the assumption
that HS

1 and HS
2 have s.a. extensions are the minimal requirements for the existence of operators H satisfying

(i)–(iii). Proofs of these results are given in [13].
We now focus on the case where d = 1, Ω1 = IR− and

H0 =− d2

dx2 +V (x), D(H0) = {ψ ∈ L2(IR) : ψ,ψ ′ ∈ AC(IR); H0ψ ∈ L2(IR)}, (4)

where AC(IR) is the set of absolutely continuous functions on IR and V (x) is a regular potential. We shall
assume it to be i) real, ii) locally integrable and satisfying iii) V (x) >−kx2, k > 0 for sufficiently large |x|.
The conditions on V (x) are such that H0 : D(H0) ⊂ L2(IR) → L2(IR) is the unique s.a. realization of the
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differential expression− d2

dx2 +V (x) on L2(IR) [14] and ensure that all s.a. realizations of− d2

dx2 +V (x) on the
semi-axes ]−∞,0] and [0,+∞[ are determined by boundary conditions at x = 0 only.

For H0 of the kind (4) the s.a. operators H = H1⊕H2 are all of the form [13,14]:

Hλ1,λ2 = Hλ1
1 ⊕Hλ2

2 :





D(Hλ1,λ2) = D(Hλ1
1 )⊕D(Hλ2

2 )

Hλ1,λ2ψ = HS†ψ,

(5)

where
D(Hλk

k ) = {ψk = χΩk φk : φk ∈D(H0)∧φ ′k(0) = λkφk(0)}, (6)

λk ∈ IR∪{∞}, k = 1,2 and the case λk = ∞ corresponds to Dirichlet boundary conditions. Moreover,

HS†
= HS†

1 ⊕HS†

2 :





D(HS†
) = {ψ = χΩ1φ1 + χΩ2φ2 : φ1,φ2 ∈D(H0)}

HS†ψ = χΩ1H0φ1 + χΩ2H0φ2.

(7)

Hence, all s.a. confining Hamiltonians of the form H1⊕H2 are s.a. restrictions of HS†
. To proceed, let us

define the operators (k = 1,2 and n = 0,1):

δ̂ (n)
k (x) : D(HS†

)−→D ′(IR); ψ = χΩ1φ1 + χΩ2φ2 −→ δ̂ (n)
k (x)ψ = δ (n)(x)φk(x), (8)

where D ′(IR) is the space of Schwartz distributions on IR and δ (0)(x) = δ (x) and δ (1)(x) = δ ′(x) are the
Dirac measure and its first distributional derivative. We can now recast the operators (5) in the additive form
H = H0 +BBC:

Theorem 2. The s.a. Hamiltonian Hλ1,λ2 given by Eq. (5) act as

Hλ1,λ2ψ =
{

H0−Bλ1
1 +Bλ2

2

}
ψ, ∀ψ ∈D(Hλ1,λ2), (9)

where now H0 is the extension to the space of distributions of the original Hamiltonian given in (4),
H0 : D ′(IR)−→D ′(IR), and

Bλ
k ≡





−δ̂ ′k(x)+(−1)kδ̂k(x), λ = ∞

δ̂ ′k(x)+2λ δ̂k(x)+(−1)k d
dx

[
δ̂k(x)

( d
dx −λ

)]
, λ 6= ∞

k = 1,2. (10)

Moreover, the maximal domain of the expression (9,10) coincides with D(Hλ1,λ2) (5), i.e.

Dmax(Hλ1,λ2)≡ {ψ ∈ L2(IR) : Hλ1,λ2ψ ∈ L2(IR)}= D(Hλ1,λ2). (11)

The proof is given in [13].
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Tõkestatud kvantsüsteemide globaalne dünaamiline formuleering

Nuno C. Dias ja João N. Prata

On antud lühiülevaade matemaatilistest probleemidest, mis tekivad ruumiliselt tõkestatud kvantsüsteemide
globaalse omaduaalse formuleeringu korral. Lähemalt on vaadeldud ühemõõtmelist juhtu ja näidatud, et
teatud distributsioone sisaldavad omaduaalsed hamiltoniaanid lubavad kirjeldada kvantsüsteemi ruumilist
tõkestatust dünaamiliselt.


