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Abstract. We consider Friedmann–Lemaı̂tre–Robertson–Walker cosmological models in the framework of general scalar–tensor
theories of gravity (STG) with arbitrary coupling functions, set in the Jordan frame. First we describe the general properties of the
phase space in the case of barotropic matter fluid and scalar field potential for any spatial curvature (flat, spherical, hyperbolic). Then
we address the question under which conditions epochs of accelerated and super-accelerated expansion are possible in STG. For flat
models filled with dust matter (and vanishing potential) we give a necessary condition on the coupling function of the scalar field which
must be satisfied to allow acceleration and super-acceleration. This is illustrated by a specific example.
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1. INTRODUCTION

The last decade has produced an abundance of cosmological precision data, leading to surprising results and
implications. Approaching the statistics of observations by more relaxed priors suggests that the expansion
of the Universe as measured by the scale factor a is not only accelerating ( ä

a > 0), but might be also about to
enter into a super-accelerating phase (Ḣ = ä

a − ȧ2

a2 > 0), sometimes dubbed as “crossing the phantom divide”
[1–5]. This possibility cannot be accommodated in the cosmological Concordance Model based on the Einstein
equations with a cosmological constant in the framework of general relativity (GR). If one prefers to play within
the traditional GR, then the onset of super-acceleration can be invoked by adding another matter component
with unusual “phantom” properties [6–8]. An alternative explanation would require superseding GR by a more
general theory of gravity. Examples of super-accelerating dust matter solutions have been studied, for instance,
in the context of f(R) [9,10] and scalar–tensor [11–16] theories.

Scalar–tensor theories of gravity (STG) employ a scalar field Ψ besides the usual space-time metric tensor
gµν to describe the gravitational interaction. Scalar field is in the role of a variable gravitational “constant”,
leaving tensorial metric field and its geodesics to act as trajectories of freely falling particles as in GR. In
general, STG form a collection of theories which contain two functional degrees of freedom, a coupling
function ω(Ψ), and a scalar potential V (Ψ). Each distinct functional form of these two functions gives us
a distinct theory of gravitation together with its field equations. It is of considerable interest to determine which
members of this family of theories allow solutions (model Universes) exhibiting periods of accelerating and
super-accelerating expansion without introducing any unusual matter component.

The study of global properties of solutions can be greatly facilitated by the mathematical methods of
dynamic systems and phase space. Several previous detailed studies which have considered STG cosmology as
a dynamic system have focused upon examples with specific coupling functions [17–23]. The main properties
of the corresponding general phase space geometry were outlined by Faraoni [24] and us [25].

∗ Corresponding author, laur.jarv@ut.ee



L. Järv et al.: Cosmological models in STG 307

The plan of the paper is the following. Section 2 introduces STG field equations for homogeneous and
isotropic cosmological models. In Section 3 we describe the phase space in the most general case: one
barotropic matter fluid component, non-vanishing scalar field potential, and arbitrary spatial geometry (flat,
spherical, hyperbolic), thus generalizing the results of previous studies [24,25]. In Section 4 we inves-
tigate the conditions under which accelerated and super-accelerated expansion is possible, and also when
the solutions enter or leave the epoch of accelerated and super-accelerated expansion. In the simplest and
phenomenologically most relevant case of dust matter, vanishing potential, and flat spatial geometry (k = 0) we
give a necessary condition on the coupling function ω(Ψ) which must be satisfied for acceleration and super-
acceleration to be possible at all. These considerations are illustrated by an example of a particular STG where
some solutions undergo a phase of super-acceleration while others do not.

2. THE EQUATIONS OF SCALAR–TENSOR COSMOLOGY

We consider a general scalar–tensor theory in the Jordan frame given by the action functional

S =
1

2κ2

∫
d4x

√−g
[

ΨR(g)− ω(Ψ)
Ψ

∇ρΨ∇ρΨ−2κ2V (Ψ)
]
+Sm(gµν ,χm) . (1)

Here ω(Ψ) is a coupling function and V (Ψ) is a scalar potential, ∇µ denotes the covariant derivative with
respect to the metric gµν , κ2 is the non-variable part of the gravitational constant, and Sm is the matter
contribution to the action as all other fields are included in χm. In order to keep the effective gravitational
constant κ2

Ψ positive, we assume that 0 < Ψ < ∞.
The field equations for the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) line element

ds2 =−dt2 +a(t)2
(

dr2

1− kr2 + r2(dθ 2 + sin2 θdϕ2)
)

(2)

with curvature parameter k = 0 (flat), +1 (spherical), −1 (hyperbolic), and perfect barotropic fluid matter,
p = wρ , read

H2 = −H
Ψ̇
Ψ

+
1
6

Ψ̇2

Ψ2 ω(Ψ)+
κ2

3
ρ
Ψ

+
κ2

3
V (Ψ)

Ψ
−K, (3)

2Ḣ +3H2 = −2H
Ψ̇
Ψ
− 1

2
Ψ̇2

Ψ2 ω(Ψ)− Ψ̈
Ψ
− κ2

Ψ
wρ +

κ2

Ψ
V (Ψ)−K, (4)

Ψ̈ = −3HΨ̇− 1
2ω(Ψ)+3

dω(Ψ)
dΨ

Ψ̇2 +
κ2

2ω(Ψ)+3
(1−3w) ρ

+
2κ2

2ω(Ψ)+3

[
2V (Ψ)−Ψ

dV (Ψ)
dΨ

]
, (5)

where H ≡ ȧ/a, K = k
a2 . The matter conservation law is the usual

ρ̇ +3H (w+1) ρ = 0 (6)

and it is reasonable to assume positive matter energy density, ρ ≥ 0.

3. PHASE SPACE

The system (3)–(6) is characterized by five variables {Ψ,Ψ̇,H,a,ρ}, but one of them is algebraically related to
the others via the Friedmann equation (3). Since the scale factor a is not physically observable, it is reasonable
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to eliminate K by Eq. (3). This leads to a phase space spanned by four variables {Ψ,Ψ̇,H,ρ}. By defining
Ψ≡ x,Ψ̇≡ y the dynamic system corresponding to equations (3)–(6) can be written as follows:

ẋ = y , (7)

ẏ = − 1
2ω(x)+3

[
dω(x)

dx
y2−κ2 (1−3w)ρ +2κ2

(
dV (x)

dx
x−2V (x)

)]
−3Hy, (8)

Ḣ =
1

2x(2ω(x)+3)

[
dω(x)

dx
y2−κ2 (1−3w)ρ +2κ2

(
dV (x)

dx
x−2V (x)

)]

−H2 +H
y
x
−ω(x)

y2

3x2 −
κ2

6x
(1+3w)ρ +

κ2V (x)
3x

, (9)

ρ̇ = −3H(1+w)ρ . (10)

The phase space may be imagined as a four-dimensional box filled by the spaghetti of one-dimensional
trajectories (orbits of solutions) which do not intersect with each other except for special points known as
fixed (critical, equilibrium) points. As the curvature invariants of FLRW metric are proportional to H and
Ḣ, the phase space boundaries |H| → ∞, |ρ| → ∞, and |Ψ̇| → ∞ generically entail a space-time singularity.
Analogously, the limit Ψ → 0 in general implies diverging |H| or |Ḣ| and poses a space-time singularity,
obstructing the solutions from safely passing from positive to negative values of Ψ (from “attractive” to
“repulsive” gravity). The limit Ψ → ∞ does not call forth a space-time singularity; however, the gravitational
“constant” vanishes.

Within this box there could also be singular hypersurfaces perpendicular to the Ψ axis, depending on the
form of ω and V . So, in general terms the limit V → ∞ renders the system singular, and also 2ω + 3 → 0
implies |Ḣ| → ∞ with the same conclusion that passing through ω(Ψ) = −3

2 (corresponding to the change of
the sign of the scalar field kinetic term in the Einstein frame action) would entail a space-time singularity and
is impossible. The limit 1

2ω+3 → 0 is also marred by a singularity, unless simultaneously

Ψ̇→ 0, ωΨ̇2 → 0,
1

(2ω +3)2
dω
dΨ

→ finite. (11)

The latter situation is particularly interesting, since in this limit the system coincides with the FLRW equations
of general relativity [25].

The trajectories corresponding to the flat FLRW geometry (k = 0) lie on the 3-surface

F : F(x,y,H,ρ)≡ H2 +H
y
x
− y2

6x2 ω(x)− κ2ρ
3x

− κ2V (x)
3x

= 0 (12)

due to the constraint (3). The trajectories corresponding to spherical and hyperbolic models remain on either
side of this surface. In principle the geometry of the 3-surface F in the four-dimensional phase space is rather
complicated to visualize, but a few general characteristics can still be given. We may write Eq. (12) as

(
H + y

2x

)2

κ2(ρ+V )
3x

− y2

4κ2x(ρ+V )
2ω+3

= 1, (13)

which for fixed ρ and x can be recognized as describing familiar conic sections: (1) for ρ +V > 0, 2ω +3 > 0
a hyperbola on the (H + y

2x ,y) plane, (2) for ρ +V > 0, 2ω + 3 < 0 an ellipse also on the (H + y
2x ,y) plane,

while (3) for ρ +V < 0, 2ω +3 > 0 a hyperbola on the (y,H + y
2x) plane. The case (4) ρ +V < 0, 2ω +3 < 0 is

not realized as real solutions are absent. This result establishes that the intersection of the 3-surface F with the
(fixed ρ , fixed x) 2-plane is constituted in either one piece (ellipse) or two pieces (hyperbola). Thus in case (1)
the allowed phase space is divided into two separate regions, the “upper” region where H + y

2x > 0 and the
“lower” region where H + y

2x < 0, and there is no way the trajectories can travel from one region to the other.
In case (2) these two regions meet along a 2-surface where H + y

2x = 0, and the trajectories can in principle
cross from one region to the other. In case (3) there are again two separate parts, now characterized by y > 0
and y < 0, respectively. At first it may be difficult to find a direct physical interpretation for the quantity H + y

2x
that characterizes the “upper” and “lower” region in cases (1) and (2), but it turns out that this combination
is equal to the Hubble parameter in the Einstein frame [25,26], and thus the “upper” region corresponds to
universes which expand in the Einstein frame, while the “lower” region has universes which contract in the
Einstein frame.



L. Järv et al.: Cosmological models in STG 309

Table 1. For certain k the Friedmann equation constrains the values of Ψ̇≡ y (14) and H (15)

Allowed range of Ψ̇ Allowed range of H
for k = 0,+1 for k = 0,−1

(1a) ρ +V ≥ 0 0≤ ω ≤ ∞ 0≤ Ψ̇2 ≤ ∞ 2κ2ω(ρ+V )
3Ψ(2ω+3) ≤ H2 ≤ ∞

(1b) ρ +V ≥ 0 − 3
2 ≤ ω ≤ 0 0≤ Ψ̇2 ≤ ∞ 0≤ H2 ≤ ∞

(2) ρ +V > 0 −∞≤ ω ≤− 3
2 0≤ Ψ̇2 ≤ 4κ2(ρ+V )Ψ

|2ω+3| 0≤ H2 ≤ 2κ2ω(ρ+V )
3Ψ(2ω+3)

Allowed range of Ψ̇ Allowed range of H
for k = 0,+1 for k = 0,+1

(3a) ρ +V ≤ 0 0≤ ω ≤ ∞ 4κ2|ρ+V |Ψ
2ω+3 ≤ Ψ̇2 ≤ ∞ 0≤ H2 ≤ ∞

(3b) ρ +V ≤ 0 − 3
2 ≤ ω ≤ 0 4κ2|ρ+V |Ψ

2ω+3 ≤ Ψ̇2 ≤ ∞ 2κ2ω(ρ+V )
3Ψ(2ω+3) ≤ H2 ≤ ∞

(4) ρ +V < 0 −∞ < ω <− 3
2 – –

Related information can be also established by another approach. With general k we may solve the
Friedmann constraint, Eq. (3), for H and then the condition for all variables to be real valued imposes an
inequality

(2ω(x)+3)
y2

12x2 +
κ2(ρ +V (x))

3x
≥ K. (14)

In terms of physics this inequality can be interpreted as a restriction on the allowed values of y. Table 1
summarizes the situation. By the allowed range for a given value of k we mean that if y satisfies the inequality
listed, then it is possible to find a real-valued a which fits the Friedmann equation. Thus for k = 0 and k = +1
there is no restriction in case (1), while case (4) is completely ruled out since no real solutions compatible with
the Friedmann constraint exist. For k =−1 there are no restrictions.

Similarly, solving the Friedmann constraint for y leads to another inequality,

(2ω(x)+3)H2− 2κ2ω(x)
3x

(ρ +V (x))≥−2Kω(x), (15)

which can be interpreted as a restriction on the allowed values of H (given also in Table 1). Analogously, once
ω(x) and V (x) are specified, we may get a third inequality from solving the Friedmann constraint for x as well.

4. ACCELERATION AND SUPER-ACCELERATION

In the four-dimensional phase space there could be regions where the trajectories exhibit super-accelerating
behaviour, marked by the condition

S(x,y,H,ρ) ≡ 1
2x(2ω(x)+3)

[
dω(x)

dx
y2−κ2 (1−3w)ρ +2κ2

(
dV (x)

dx
x−2V (x)

)]

−H2 +H
y
x
−ω(x)

y2

3x2 −
κ2

6x
(1+3w)ρ +

κ2V (x)
3x

> 0, (16)

and surrounded by regions of accelerated expansion, delineated by

A(x,y,H,ρ) ≡ 1
2x(2ω(x)+3)

[
dω(x)

dx
y2−κ2 (1−3w)ρ +2κ2

(
dV (x)

dx
x−2V (x)

)]

+H
y
x
−ω(x)

y2

3x2 −
κ2

6x
(1+3w)ρ +

κ2V (x)
3x

> 0. (17)
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For a cursory comparison with general relativity let us recall that in GR super-acceleration requires matter with
barotropic index w <−1, while acceleration demands w <−1

3 . Cosmological constant behaves as a barotropic
fluid with w = −1. Equations (16), (17) readily reveal that identical conditions are recovered in STG at the
GR limit (11), where the fixed value of the potential is read as the cosmological constant, and the Friedmann
constraint (3) should be taken into account along with (16).

However, away from the GR limit, new possibilities occur. First, irrespective of the matter content, the
scalar field itself may trigger accelerated and super-accelerated expansion in the domain where ω < 0 or

1
2x(2ω+3)

dω
dΨ > 0. Second, acceleration and super-acceleration may also occur for matter with w > 1

3 in the

domain where 2ω + 3 > 0, or for w < 1
3 in the domain where 2ω + 3 < 0. Third, the overall effect of the

potential is considerably more complicated than that of a simple cosmological constant, depending on the
derivative dV

dΨ as well as the sign of 2ω + 3, and even implying a possibility that a constant negative potential
may lead to super-acceleration, provided that 2ω +3 > 0.

The region of super-acceleration is bounded by the 3-surface S : S(x,y,H,ρ) = 0. The circumstance
whether the trajectories enter this region can be read off from the scalar product of the gradient normal to S

and the tangent vector of the phase flow T i = (ẋ, ẏ, Ḣ, ρ̇), namely ∇iS · T i
∣∣∣
S

> 0. A completely analogous
condition arises for the surface A = 0 bounding the region of acceleration.

These results, expressed in full generality, hint ample possibilities for acceleration and super-acceleration,
but in order to come up with more exact conditions one has to narrow down the scope a bit. Therefore let us
focus upon the physically most interesting case of spatially flat (k = 0) universe filled with dust matter (w = 0)
and vanishing potential. In this case Eq. (4) can be written as

Ḣ = −H2

2
− 5

12
ωΨ̇2

Ψ2 − Ψ̈
2Ψ

− κ2ρ
3Ψ

= −2H2 +
κ2ωρ

3Ψ(2ω +3)
+

Ψ̇2

2Ψ2

(
Ψ

2ω +3
dω
dΨ

− ω
3

)
. (18)

Here the first line informs that super-acceleration is only possible if ω < 0, or Ψ̈ < 0. From the second line,
which has taken Eq. (5) into account, we can read off a necessary condition on the form of the coupling function
ω for super-acceleration to be possible

C =
Ψ

2ω +3
dω
dΨ

− ω
3

> 0, (19)

assuming 2ω + 3 > 0. The reason is that if ω > 0, the Friedmann constraint imposes κ2ω(ρ)
3Ψ(2ω+3) ≤ H2

2 , and
the only positive contribution towards super-acceleration can arise from the third term in (18). The same is
true for −3

2 < ω < 0 since then the second term is negative itself. (It is easier to achieve super-acceleration if
2ω + 3 < 0, but this option is not so lucrative since in the Einstein frame, where the tensor and scalar degrees
are not mixed, the kinetic energy of the latter is negative, and thus problematic [27].)

Note that Eq. (19) provides only a necessary but not sufficient condition for super-accelerating solutions to
be present in a model. More exactly, it states that in the domain of Ψ, where (19) holds, there may be solutions
which undergo super-accelerated expansion. In the domain of Ψ, where (19) does not hold, super-acceleration
is not possible. Therefore, given a zoo of all possible forms of ω , it can be used to filter out and discard from
further investigation those forms of ω that are decidedly infertile with respect to super-acceleration.

Finally, as an illustration, let us consider 2ω +3 = 1
2(1−Ψ) . Here 2ω +3 > 0 and (19) holds in the domain

0 < Ψ < 1. Inspection of the phase space flow reveals that the trajectories on the “upper sheet” (H + Ψ̇
2Ψ > 0),

where most of the expanding, H > 0, models lie, belong to two typical classes: either exhibiting a super-
accelerating phase or not, see Fig. 1. The dynamics has been characterized by the evolution of the effective
barotropic index, weff =−1− 2Ḣ

3H2 , defined as an analogy to single component barotropic fluid FLRW models in
GR. In particular, weff = 0 characterizes the decelerating evolution of usual dust matter, weff <−1

3 is required
for acceleration, while weff = −1 corresponds to the “phantom divide line” below which super-acceleration
occurs.
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t

Fig. 1. Two typical cosmological evolutions in the case of 2ω + 3 = 1
2(1−Ψ) , V (Ψ) ≡ 0, w = 0, k = 0: one solution (solid line) goes

through a brief period of super-accelerated expansion (where weff <−1), the other solution (dashed line) does not.
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Mõned märkused superkiirenevate kosmoloogiliste mudelite kohta
gravitatsiooni üldises skalaar-tensorteoorias

Laur Järv, Piret Kuusk ja Margus Saal

On vaadeldud Friedmanni-Lemaı̂tre’i-Robertsoni-Walkeri kosmoloogilisi mudeleid Jordani raamis esitatud
gravitatsiooni üldises skalaar-tensorteoorias (STG), mis sisaldab suvalist seosefunktsiooni. On kirjeldatud
faasiruumi üldisi omadusi barotroopse vedeliku tüüpi mateeria ja skalaarvälja potentsiaali olemasolu korral
ruumilise kõveruse kõigil juhtudel (tasane, sfääriline, hüperboolne). On uuritud küsimust, millistel tingimustel
saab neis mudelites universumi paisumine olla kiirenev või superkiirenev. Selliste tasaste mudelite jaoks,
kus kosmoloogiliseks mateeriaks on tolm ja skalaarvälja potentsiaal puudub, on antud tarvilik tingimus, mida
seosefunktsioon peab rahuldama, selleks et universum võiks paisuda kiirenevalt või superkiirenevalt. Arutlused
on illustreeritud sobiva konkreetse näitega.


