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Abstract. We prove that the operad for ternary partially associative algebras is non Koszul. The aim is to underline the problem
of computing the dual operad when we consider quadratic operad for n-ary algebras in particular when n is odd. In fact, the dual
operad is generally defined in the graded (differential) operad framework. The result of non-Koszulity extends for other operads
for (2p+1)-ary partially associative algebras although the operads for (2p)-ary partially associative algebras are Koszul.
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1. INTRODUCTION

We are interested, for any natural number n, in the operad, denoted pA ssn
0, associated to n-ary algebras

whose multiplication µ satisfies
n

∑
i=1

(−1)(i−1)(n−1)µ(X1, · · · ,Xi−1,µ(Xi, · · · ,Xi+n−1),Xi+n, · · · ,X2n−1) = 0.

Such a multiplication is called n-ary partially associative. These operads were first studied by Gnedbaye [3].
This paper, which resumes my talk given in the meeting of Tartu, concerns more precisely the non-Koszulity
of these operads when n is odd equal to 3. It is a part of a larger work co-authored by Martin Markl [8].

When computing the free algebras associated to (2p + 1)-ary partially associative algebras, using
different arguments in [7] and [8], we saw that the cases n even and n odd behaved in a completely different
way. Our approach is slightly different from the approach in [3], which contains some misunderstanding
of the odd case. In fact, contrary to what we find in this paper, the operads associated to ternary partially
associative algebras and other (2p+1)-ary partially associative algebras are not Koszul and so the operadic
cohomology does not capture deformations.

To study the (non-)Koszulity of pA ssn
0, we need to define the dual operad, which involves understanding

the definition of Ginzburg and Kapranov [2] developed in the case of binary operations in order to extend
it to n-ary operations. When we compute the dual of a graded or nongraded operad, we get graded objects
which involve suspensions. In particular, if we consider an n-ary multiplication of degree 0 and its associated
operad P , an algebra on its dual operad P ! corresponds to an n-ary multiplication of degree n−2. In our
case, as n is odd, the multiplication of an algebra on the dual operad is of odd degree, i.e. can be placed in
degree 1 and not in degree 0. If we forget this degree we get an operad over algebras with multiplication of
even degree which does not correspond to the dual operad in the Ginzburg–Kapranov sense when n is odd.

In the following we consider K a field of characteristic 0 and the operads that we discuss are generally
K-linear operads. All definitions and concepts used refer to [2] and [9].
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2. THE OPERAD pA ss3
0

This section deals with the operad of ternary – i.e. 3-ary – partially associative algebras, that is, algebras
defined by a multiplication

µ : A⊗3 → A

satisfying the relation
µ ◦ (µ⊗ I2)+ µ ◦ (I1⊗µ⊗ I1)+ µ ◦ (I2⊗µ) = 0,

where I j : A⊗ j → A⊗ j is the identity map. We have a classical example of such an algebra when we consider
the Hochschild cohomology of an associative algebra [1]. If C k(V,V ) denotes the space of k-cochains of
the Hochschild cohomology of the associative algebra V , the Gerstenhaber product ◦n,m is a linear map

◦n,m : C n(V,V )×C m(V,V )→ C n+m−1(V,V )

given by

f ◦n,m g(X1⊗·· ·⊗Xn+m−1) =
n

∑
i=1

(−1)(i−1)(m−1) f (X1⊗·· ·⊗g(Xi⊗·· ·⊗Xi+m−1)⊗·· ·⊗Xn+m−1),

if f ∈Cn(V ) and g ∈Cm(V ). A ternary partially associative product is a 3-cochain µ satisfying µ ◦3,3 µ = 0.
Recall the basic notions of operad and quadratic operad (see [2]). An operad P consists of a collection

{P(n),n≥ 1} of K-vector spaces such that each P(n) is a Σn-module, where Σn is the symmetric group
on n elements. There is an element 1 ∈P(1) called the unit and linear maps

◦i : P(n)×P(m)→P(n+m−1)

called comp-i operations satisfying associativity conditions, and the comp-i operations are compatible with
the action of the symmetric group.

Recall that a P-algebra is aK vector space V equipped with a morphism of operads f : P → EV where
EV is the operad of endomorphisms of V . Giving a structure of a P-algebra on V is the same as giving a
collection of linear maps

fn : P(n)⊗V⊗n →V

satisfying natural associativity, equivariance, and unit conditions.
If E is a right-K[Σ2]-module, we can define an operad, denoted by F (E) and called the free operad

generated by E which is the solution of the following universal problem: for any operad Q = {Q(n)} and
any K[Σ2]-linear morphism f : E →Q(2), there exists a unique operad morphism f̂ : F (E)→Q which
coincides with f on E = F (E)(2). We have for example

F (E)(3) = (E⊗E)⊗Σ2 K[Σ3].

If R is a K[Σ3]-submodule of F (E)(3), it generates the operadic ideal R = (R) of F (E). The quadratic
operad generated by E with relations R is the operad P(K,E,R) = {P(K,E,R)(n),n≥ 1} with

P(K,E,R)(n) = F (E)(n)/R(n).

This notion of quadratic operad is related to binary algebras. In [3] this notion is adapted to n-ary algebras.
In this case we consider a generating multiplication µ which is an n-ary multiplication, that is E =< µ >
generated as a K[Σn]-module. We define the free operad F (E) generated by E in the same way as in the
binary case and the ideal of relations with R is aK[Σ2n−1]-submodule of F (E)[Σ2n−1]. Then we have always
F (E)(m) = 0 if m 6= k(n−1)+1.
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Examples

(1) If E is generated by an n-ary operation of degree 0 with no symmetries, we get that F (E)(k(n−1)+1)
consists, as a vector space, of “parenthesized products” of k(n − 1) + 1 variables indexed by
{1, · · · ,m = k(n−1)+1}. For instance, a basis of F (E)(n) is given by (x1 · · ·xn) and all their permutations,
a basis of F (E)(2(n−1)+1) is given by

((x1 · · ·xn)xn+1 · · ·x2n−1),(x1(x2 · · ·xn+1)xn+2 · · ·x2n−1), · · · ,(x1 · · ·xn−1(xn · · ·x2n−1))

and all their permutations.

(2) Consider that E is generated by an n-ary operation µ of degree 1. We can visualize µ by
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and more generally an element of F (E)(k(n− 1) + 1) by a rooted planar n-ary tree with levels and
(k(n−1)+1)) leaves.

For instance, for n = 3,

µ ◦ (Id2⊗µ)◦ (µ⊗ Id4), µ ◦ (Id⊗µ⊗ Id)◦ (µ⊗ Id4), µ ◦ (µ⊗ Id2)◦ (Id3⊗µ⊗ Id)

corresponds respectively to the following ternary trees with levels and 7 leaves:

The relations that we consider will be quadratic in the sense that we compose two n-ary multiplications. So
R is a K[Σ2n−1]-submodule of F (E)(2n− 1). The operad R = (R) is the operadic ideal generated by R.
In particular, R(m) = 0 for m = 1 and m 6= k(n− 1)+ 1. In other words, R(k(n− 1)+ 1) consists of all
relations in F (E)(k(n−1)+1) induced by the relations R.

Let us focus on quadratic operads in the ternary case.



358 Proceedings of the Estonian Academy of Sciences, 2010, 59, 4, 355–363

Definition 1. Let E be a K[Σ3]-module and F (E) the free operad over E. If R is a K[Σ5]-submodule of
F (E)(5) and if (R) is the operadic ideal generated by R, then the ternary quadratic operad P(K,E,R)
generated by E and R is the quotient

F (E)/(R),

that is P(K,E,R)(m) = F (E)(m)/(R)(m).

Note that F (E)(m) = 0 when m is even.

Examples
Consider that E is generated by a 3-ary operation of degree 0 with no symmetries: E ' K[Σ3]. Let RpA ss3

0

be the K[Σ5]-submodule of F (E)(5) generated by the vector

(x1x2x3)x4x5 + x1(x2x3x4)x5 + x1x2(x3x4x5).

Then the corresponding quadratic operad is the operad pA ss3
0 for partially associative 3-ary algebras

pA ss3
0 = F (E)/(RpA ss3

0
).

If RtA ss3
0

is the K[Σ5]-submodule of F (E)(5) generated by the vectors

{
(x1x2x3)x4x5− x1(x2x3x4)x5,
x1(x2x3x4)x5− x1x2(x3x4x5),

then the corresponding quadratic operad is the operad tA ss3
0 for totally associative 3-ary algebras. Recall

that the multiplication of a ternary totally associative algebra satisfies

µ ◦ (µ⊗ I2) = µ ◦ (I1⊗µ⊗ I1) = µ ◦ (I2⊗µ) = 0.

We know that for any operad P , the spaces P(m) are related to the free P-algebras. In [7] we studied
the free partially associative 3-ary algebras

L3paA ss(V ) = ⊕
k≥0

L 2k+1
3paA ss(V )

over a vector space V . We computed the dimensions of its homogeneous components and found a basis and
a systematic method to write this basis. In particular, we have, if dimV = 1,

dimL 3
pA ss3

0
(V ) = 1, dimL 5

pA ss3
0
(V ) = 2, dimL 7

pA ss3
0
(V ) = 4,

dimL 9
pA ss3

0
(V ) = 5, dimL 11

pA ss3
0
(V ) = 6, dimL 13

pA ss3
0
(V ) = 7.

We deduce that

dim(pA ss3
0)(3) = dimK[Σ3] = 6, dim(pA ss3

0)(5) = 2×dimK[Σ5] = 240

and more generally
dim(pA ss3

0)(2k +1) = (k +1) dimK[Σ2k+1].

Recall that the generating map of an operad P is a power series also called Poincaré series

gP(x) =
∞

∑
n=1

χ(P(n))
xn

n!
,
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where χ(P(n)) denotes the Euler characteristic of the graded vector space P(n). The Poincaré series of
pA ss3

0 is then written

gpA ss3
0
(x) =

∞

∑
n=1

dim(pA ss3
0)(n)

xn

n!

with the convention dim(pA ss3
0)(1) = 1. Then

gpA ss3
0
(x) = x+ x3 +2x5 +4x7 +5x9 +6x11 +7x13 + · · · .

Recall that a quadratic operad P = P(K,E,R) is Koszul if and only if, for any vector space M, the
P-algebra homology (also called the operadic homology) of the free P-algebra FP(V ) generated by V
equals V in degree 1 and vanishes in all other degrees. If P is a Koszul operad, then its Poincaré series
gP(x) satisfies

gP(−gP !(−x)) = x,

where P ! is the dual operad. Consider gpA ss3
0

the generating function of pA ss3
0 and s the formal power

series satisfying
gpA ss3

0
(−s(−x)) = x.

We find
s(x) = x− x3 + x5−19x11 +O[x]12.

Such a series cannot be, because of the minus signs, a Poincaré series of a quadratic operad corresponding to
a multiplication of degree 0. We also conclude that the operads pA ss3

0 and tA ss3
0 with generating operation

of degree 0 cannot be both Koszul and dual of each other. In the next section we compute the (graded) dual
operad of pA ss3

0 and we will see that its generating function is a polynomial of degree 5, so (1) implies the
non-Koszulity of pA ss3

0.

Remark. If we consider the operad tA ss3
0 associated to ternary totally associative algebras with operation

placed in degree 0 that satisfies

µ ◦ (µ⊗ I2) = µ ◦ (I1⊗µ⊗ I1) = µ ◦ (I2⊗µ) = 0,

we get the generating function

gtA ss3
0
(x) = x+ x3 + x5 + x7 + x9 + · · ·+ x2k+1 + · · · .

If we suppose this operad P = tA ss3
0 to be Koszul, we will get that the dual operad P ! has as generating

function gP ! satisfying gP(−gP !(−x)) = x. But the identity gtA ss3
0
(−h(−x)) = x yields to

h(x) = x+ ∑
m≥2

am

m!
xm

and an do not correspond to the dimensions of the operad pA ss3
0.

We get the same result for pA ss2p+1
0 associated to (2p + 1)-ary totally associative algebras with

operation placed in degree 0 that satisfies

µ ◦ (µ⊗ I2p) = µ ◦ (I1⊗µ⊗ I2p−1) = · · ·= µ ◦ (I2p⊗µ) = 0;

the generating function is

gpA ss2p+1
0

(x) = x+ x2p+1 + x4p+1 + · · ·+ x2kp+1 + · · · .
The identity gtA ss2p+1

0
(−h(−x)) = x yields to

h(x) = x+ ∑
m≥2

bm

m!
xm,

but, if p < 4, the identity implies that at least one bm is negative so the function h does not correspond to a
generating function of an operad associated to a product of degree 0.
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3. THE DUAL OPERAD

To compute the dual operad of the operad associated to n-ary algebras we need some differential graded
operad. Recall that if C is a monoidal category, a Σ-module A is a sequence of objects {A(n)}n≥1 in C
with a right-Σn-action on A(n). Then an operad in a (strict) symmetric monoidal category C is a Σ-module
P together with a family of structural morphisms satisfying some associativity, equivariance, and unit
conditions.

We use the fact that dgVect, the category of differential graded vector spaces over the base field K (an
object of dgVect is a graded vector space together with a linear map d (differential) of degree 1 such that
d2 = 0; morphisms are linear maps preserving gradings and differentials), is a symmetric monoidal category
and we can consider an operad in this category dgVect.

A differential graded operad (or dg operad) is a differential graded Σ-module with an operad structure
for which the operad structure maps are differential graded morphisms.

A (nongraded) operad can be seen as a differential graded operad having trivial differentials, and
nongraded objects are objects trivially graded.

Since a dg operad P is itself a monoid in a symmetric monoidal category, the bar construction applies
to P , producing a dg operad B(P). The linear dual of B(P) is a dg operad denoted by C (P) and called
the cobar complex of the operad P . We also need the dual dg operad D(P), which is just C (P) suitably
regarded. Quadratic operads are defined as having a presentation with generators and relations and for them
the dual operad will also be quadratic. For quadratic operads there is a natural transformation of functors
from D(P) to P ! which is a quasi-isomorphism if P is Koszul. This concept is similar to the concept of
quadratic dual and Koszulity for associative algebras.

Any quadratic operad P generated by a binary multiplication admits a dual operad which is also
quadratic and denoted P !. To define it, we need to recall some definitions and notations. Let E be a Σ-
module. The dual Σ-module E# = {E#(n)}n≥1 is defined by

E#(n) = HomK(E(n),K)

and the Σn representation on E(n) determines a dual representation on E#(n) by

(λ ·σ ,µ) := (λ ,µ ·σ−1)

for µ ∈ E(n),λ ∈ E#(n), and σ ∈ Σn. The Czech dual is the Σ-module E∨ = {E∨(n)}n≥1 with

E∨(n) = E#(n)⊗ sgnn.

Consider the Σ-module Ẽ = {Ẽ(n)}n≥1 with

Ẽ(n) = ↑n−2E#(n)⊗ sgnn,

where ↑n−2 denotes the suspension iterated n− 2 times. So Ẽ =↓ (sE#). Then the quadratic dual operad
is defined as a quotient of the free operad F (Ẽ) by relations orthogonal (in some sense) to the relations
defining the original quadratic operad P . So if Q = P(E,R) (i.e. E corresponds to the generators and R to
the relations), the dual operad Q! is defined by Q! = P(Ẽ,R⊥) where R⊥ ⊆F (Ẽ)[Σ2n−1] is the annihilator
with respect to some paring of the relations R ⊆ F (E)[Σ2n−1] defining Q. But notice that in general the
definition of quadratic dual operad contains a suspension. If we consider a quadratic operad generated by
an operation E =< µ >∈ K[Σ2] where µ is binary of degree 0, the dual operad is still a quadratic operad
generated by an operation of degree 0.

Now if we consider n-ary algebras, we have seen that we can still define the notion of quadratic operad,
that is we consider a generating multiplication which is an n-ary multiplication µ , that is E =< µ >⊂K[Σn],
and relations which are quadratic, that is R is a K[Σ2n−1]-submodule. We can still define a pairing as in the
case of a binary operation but now it is a map

<, >: F (E)(n)⊗F (Ẽ)(n)→K.
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Then we get R⊥ but the dual operad P ! is

P !(n) =↓F (sE#)(n)/(R⊥)(n) = F (Ẽ)(n)/(R⊥)(n).

When the generating operation of P is of even arity (i.e. n = 2p), the generating operation of P ! is of even
arity. But if the arity is odd, the dual operad is a quadratic operad with a generating operation of odd degree.

Now let us come back to the determination of the dual operad of pA ss3
0.

Theorem 2 [8]. The dual operad of the pA ss3
0 operad is the operad of totally associative algebras with

the operation of degree 1, that is tA ss3
1.

This follows directly from the definition of the dual operad of a quadratic n-ary operad. Explicitly, if
P = pA ss3

0, its dual P ! is generated by a ternary multiplication λ of degree 1 which can be depicted as

¡
¡

¡
¡¡

@
@

@
@@

and the relations of R are generated by λ ◦1 λ = λ ◦2 λ = λ ◦3 λ , which can be visualized by

We get dimP !(5) = 1× dimK[Σ5] = 120. Then all operations in P !(kn + 1) are trivial for k > 3. In
fact, the operation λ is of degree 1, so we get

With the same trick we get any 7-leaves tree with level zero and P !(7) = 0. But any 9-leaves tree with
level is obtained from a 7-leaves tree with level, so it is also zero and P !(9) = 0. More generally

P !(2k +1) = 0,
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for any k ≥ 3. So
dim((pA ss3

0)
!
)(3) = dim((pA ss3

0)
!
)(5) = 1

and
dim((pA ss3

0)
!
)(2k +1) = 0

for k ≥ 3. We deduce

Theorem 3. The generating function of the dual operad of pA ss3
0 is

g(pA ss3
0)

!(x) = x− x3 + x5.

But we saw in the previous section that the formal series satisfying

g(pA ss3
0)!(−s(−x)) = x

is of the form
s(x) = x− x3 + x5−19x11 +O[x]12.

Then it does not correspond to the generating function of the dual of pA ss3
0.

Corollary 4. The quadratic operad pA ss3
0 is non Koszul.

We get the same result for the operad pA ss2p+1
0 , i.e. the operad for (2p + 1)-ary partially associative

algebras with generating operation of degree 0. Its dual is the operad for (2p + 1)-ary totally associative
algebras with generating operation of degree 1. Both operads are non Koszul for p < 4 [8].

Theorem 5. The generating function of the dual operad of pA ss2p+1
0 which is isomorphic to the operad

tA ss2p+1
1 for (2p+1)-totally associative algebras with operation of degree 1 is

g(pA ss2p+1
0 )!(x) = x− x2p+1 + x4p+1.

Remark. In [5] and [6], we also determined natural binary operads which are not Koszul. But in this case,
the multiplication is binary and the notion of degree is superfluous.

4. THE QUADRATIC OPERAD p̃A ss3
0

In [10] we defined, given a quadratic operad P , a quadratic operad P̃ with the following property:
For every P-algebra A and every P̃-algebra B, the tensor product A⊗B is a P-algebra.

Proposition 6. We have

p̃A ss3
0 = tA ss3

0.

Here the product is considered to be of degree 0. In many classical cases, we have seen that P ! = P̃ .
Some examples where this equality is not realized are constructed using binary non-associative algebras.

Remark: The operad of Jordan Triple systems. A Jordan Triple system on a vector space is a 3-ary
product µ satisfying the commutativity condition

µ(x1,x2,x3) = µ(x3,x2,x1)
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and
µ(x1,x2,µ(x3,x4,x5))+ µ(x3,µ(x2,x1,x4),x5) = µ(µ(x1,x2,x3),x4,x5)
+µ(x3,x4,µ(x1,x2,x5)).

We denote by J ord3 the operad of algebras defined by a Jordan Triple system. In [4] it is proved that
this quadratic operad is Koszul computing its dual. But the definition of the dual is based on the nongraded
version of [3]. Then they consider that the dual corresponds to papas for partially associative and partially
skewsymmetric (i.e. (x1,x2,x3) = −(x3,x2,x1) where ( , , ) is the associator) algebras but with generating
operation of degree 0 and we are not sure that the Koszulity of J ord3 is satisfied. This calculus using
product of degree 1 is being worked out by Nicolas Goze and myself.
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Koszuli tingimuse rikkumine ternaarses osaliselt assotsiatiivses operaadis

Elisabeth Remm

On tõestatud, et ternaarsete osaliselt assotsiatiivsete algebrate operaadis Koszuli tingimus ei kehti. Eesmär-
giks on rõhutada duaalse operaadi arvutamise probleemi n-aarsete algebrate ruutoperaadi korral, eriti kui
n on paaritu. Õigupoolest defineeritakse duaalne operaad gradueeritud (diferentsiaal-) operaadi formalis-
mis. Koszuli tingimuse rikkumine laieneb ka teistele osaliselt assotsiatiivsete (2p + 1)-aarsete algebrate
operaadidele, kuigi osaliselt assotsiatiivsete (2p)-aarsete algebrate operaadides Koszuli tingimus kehtib.


