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Abstract. Consider the action of a group G on an ordinary commutative k-variety X = Spec(A). In this note we define the category
of A—-G-modules and their deformation theory. We then prove that this deformation theory is equivalent to the deformation theory
of modules over the noncommutative k-algebra A[G] = AfG. The classification of orbits can then be studied over a commutative
ring, and we give an example of this on surface cyclic singularities.
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1. INTRODUCTION

Consider the action of a group G on an ordinary commutative k-variety X = Spec(A). We define the category
of A—G-modules, Definition 2.1, and their deformation theory. We then prove that this deformation theory is
equivalent to the deformation theory of modules over the noncommutative k-algebra A[G] = AfG. Thus the
noncommutative moduli of the one-sided A[G]-modules can be computed as the noncommutative moduli
of A-modules with A commutative, invariant under the (dual) action of the group G, which simplify the
computations significantly. The orbit closure of x € X corresponds to an A[G]-module M, = A/ay, so that
the classification of closures of orbits can be studied locally by deformation theory of M, as an A—G-module.
Finally, we work through an example of the noncommutative blowup of cyclic surface singularities.

2. MODULES WITH GROUP ACTIONS

Let k be an algebraically closed field of characteristic 0. Let G be a finite dimensional reductive algebraic
group acting on an affine scheme X = SpecA, A a finitely generated (commutative) k-algebra. Let a, be the
ideal of the closure of the orbit of x and let G — Aut,(A) sending g to V,, be the induced action of G on A.
Then, as the ideal a, is invariant under the action of G on A, we get an induced action on A/a,. The skew

group algebra over A is denoted A[G]. It consists of all formal sums }. a,g with product defined by
geG

(ai181)(a2g2) = a1V, (a2)g182-

For later use notice that this definition extends the definition of the group algebra over k, k[G]. Now, the
action of A[G] on M, given by (ag)m = aV,(m) defines M, as an A[G]|-module because
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((a181)(a282))m = (a1Vg, (a2)g182)m = a1 Vg, (a2) Vg g, (m)
=a1Vg (a2Vy,(m)) = a181((a2g2)m).

Thus the classification of orbits is the classification of the corresponding A[G]-modules M,. The main issue
of this section is the following definition and the lemma proved by the argument above:

Definition 2.1. An A—G-module is an A module with a G-action such that the two actions commute, that is
Vg(am) = Vg(a)Vg(m).

Lemma 2.1. The category of A—~G-modules and the category of A|G]-modules are equivalent.

3. DEFORMATION THEORY

For A a not necessarily commutative k-algebra, V = {V;}/_, a swarm of right A-modules (which means that
dimy, Ext},(V,-, Vj) < oo for 1 < i, j <r), there exists a well-known deformation theory, see [3]. Let a, be the
category of r-pointed artinian k-algebras. It consists of the commutative diagrams

k' —R

N

kr
such that rad(R) = ker(p) fulfills rad(R)" = 0 for some n. Generalizing the commutative case, we set d,
equal to the category of complete r-pointed k-algebras R such that R/rad(R)" is in a, for all n. Letting

R;j = eiRej, it is easy to see that R is isomorphic to the matrix algebra (R;;). The noncommutative
deformation functor Defy : a, — Sets is given by

Defy (R) = {R Qi A°P-modules VR|VR =R (Rij R Vj), ki Qr Vg = Vz}/ =

Let Vg € Defy (R). The left R-module structure is the trivial one, and the right A-module structure is given
by the morphisms oX : V; — R; @k Vj. As in the commutative case, an (r-pointed) morphism ¢ : § — R
is small if ker¢ - rad(S) = rad(S) - ker¢ = 0, and for such morphisms, lifting the o® directly to S, the
associativity condition gives the obstruction class o(¢,Vg) = (05, — 050;) € I @, HH*(A, Homy (V;,V;))
where I = (I;;) = ker¢, such that Vx can be lifted to Vs if and only if o(Vg,¢) = 0, see [3] or [1] for
details and complete proofs. Obviously, computations are much easier if A is a commutative k-algebra.
This is possible to achieve when working with G-actions and orbit spaces. For a family V = {V;}/_, of
A-G-modules, we put

Def (R) = {Vi € Defy (R)|3A — G-structure V : G — End(Vg)} C Defy (R).

In [2,3] Laudal constructs the local formal moduli of A-modules. In [5,6] applications in the commutative
case are given, and in [7] an easy noncommutative example is worked through. In these cites we start with
the k-algebra k[e] = k[€]/€? and use the tangent space

Defy (k[€]) = (HH' (A, Homy(V;,V;))) = Ext} (M, M)

as dual basis for the local formal moduli A. The relations among the base elements are given by the
obstruction space
HH? (A, Homy (V, V) = (Ext3 (Vi, V).
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4. GENERALIZED MATRIX MASSEY PRODUCTS (GMMP)

. . . dio di) dip
Let {Vi}/_, be a given swarm of A-modules. For each i, choose free resolutions 0 «— V; <= L;g <= L;j <=
Li>«+---. We write

L, 0 - 0
0 L, -~ 0

L= . . .
0 0 - L,

and we can prove Lemma 4.1 following the proof in [6] step by step:

Lemma 4.1. Let Vs € Defy(S) and let ¢ : R — S be a small surjection. Then there exists a resolution
LS = (S®y L.,d%) lifting the complex L., and to give a lifting Vi of Vs is equivalent to lift the complex L3
to LR.

Proof. Generalized from the commutative case, Mg =g (R; @k M) is equivalent with Mg R-flat. Using this,
and tensoring the sequence 0 — I — R — S — 0 with My over R, gives the sequence 0 — I @y M — Mr —
Mg — 0. Ordinary diagram chasing then proves that the resolution of Mg can be lifted to an R-complex L.%
given the resolution L.5 of Ms. Conversely, given a lifting L. of the complex L.5 of Mg, the long exact
sequence proves that this complex is a resolution, and that Mg = H(L.R) is a lifting of M. O

If M is an A—G-module where G acts rationally on A and M is a rational G-module, finitely generated
as an A-module, then an A-free (projective) resolution of M can be lifted to an A—G-free resolution, that is a
commutative diagram

0 14 Ao AM AP
o e e e
0 Vv Ao A A"

This proves that Lemma 4.1 is a particular case of the same lemma with Defy (S) replaced by Def$(S).
In [7] we give the definition of GMMP. The tangent space of the deformation functor is Defg (E) =
(Exty_5(Vi,V;)), where E is the noncommutative ring of dual numbers, i.e. E =k < t; > /(t;;)*. For
computations we note that when G is reductive and finite dimensional, Homs_g(V;,V;) = Homu (V;, Vj)G
and Ext} _5(V;,V;) = Ext}(V;,V;), G acting by conjugation. Given a small surjection ¢ : R — S, with
kernel I = (I;;), lift d.5 on S®; L. to d.X on R® L. in the obvious way. Then o(¢,Vs) = {dRdR |}i>1 €
(I;; 2k Exti_(V;,V;)). By the definition of GMMP in [7], these can be read out of the coefficients of a basis
in the obstruction space above.

S. THE MCKAY CORRESPONDENCE

Let
1

— 0
G—Z2—<<0 _1> >=<T1>

act on A% by t(a,b) = (—a,—b). Our goal is to classify the G-orbits, and to find a compactification
Mg — ]P’((z: of the orbit space M. The existing partial solution is

M = Spec(k[x*,xy,y]) = Spec(A®), A = k[x,y].
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This is an orbit space, but not moduli. Consider the point P = (a,b) = (y/w,ty/w), w # 0. Then

o(P) = {(vw,tv/w), (=vw,—tv/w)} = Z(1,),
2

where I, = (x* —w,y —tx). We compute the local formal moduli of the A~G-module M, = A/I; from the
diagram

0<—A/L A AM A™

A/l

where the upper row is a resolution, we see that in general, Ext} (M;, M, ) = Homy (I, /I?,A/I,) with the action
of G given by conjugation, that is the composition given in the sequence

\Y A
L— A — AL

8

I;

We get

2

v V.1
(x* —w,y —tx) — (x* —w,y —1x) L>k[x,y]/1z — = klx,y)/I,

so that ¢ = (o, Bx) = a(1,0) + B(0,x) is invariant under the action of G. Writing this up in complex form,
we get

= vy, a=(275) =00 d-on. 8= () &= (3).

w—X

We find ]E2 = EJEF = E[EF + E)E2 = 0, which means that all cup-products are identically zero.
Thus Hy, = k[[t1,2]] with algebraization Hy;, = k[t1,1,]. Because the particular point 0 = (0,0) corresponds
to My = k[x,y]/(x,y) with Ext}_;(Mo,My) = 0, we understand that My is a singular point, so that the
modulus is Mg = (A% — {0}) U {pt}. At least in this case, resolving the singularity is a process of
compactifying. Given a family V = {V;}/_, of simple A-modules, an A-module E with composition series
E=EyDE D---DE DEi_1 D---DE, D0, where E;/E;,_; =V, is called an iterated extension of the
family V, and the graph I'(E) of E (the representation type) is the graph with nodes in correspondence
with V' and arrows p;, i, , connecting the nodes V; and V; ,, identifying arrows if the corresponding
extensions are equivalent. In [3] Laudal solves the problem of classifying all indecomposable modules
E with fixed extension graph I. He proves that for every E there exists a morphism ¢ : H(V) — k[I]
such that E & M ®g k[I'], where M is the versal family, resulting in a noncommutative scheme Ind(I').
In [4], he then proves that the set Simp,(A) of n-dimensional simple representations of A with the
Jacobson topology has a natural scheme structure. He also proves that when I is a representation graph
of dimension n = Yy rdim; V, then the set Simp(I") = Simp,,(A) UInd(I") has a natural scheme structure
with the Jacobson topology, which is a compactification of Simp,(A). In our present example, we let
I" be the representation type of the regular representation k[G]. We construct the composition series
k[G] = k[t]/(2—1) D (t—1)/(72—1) D 0. Thus we get Vo = k[7]/(t— 1) 2k, Vi = (t—1) /(7> — 1) =k

, . . V.-
and the action V% of 7 on V; is given by V.. = (—1)’. From the sequence (x,y) Ve (x,y) 4 Vi—>V;
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we immediately see that Ext}_5(V;,V;) = a(1,0) + B(0,1) when i # j, 0 if i = j. Writing up the
corresponding diagram and multiplying as in the previous example, we get

( k <t12(1),112(2) >>
<tr(1),121(2) > k

(l‘]z(l)l‘21(2)l‘12( )l‘21(1) 0 ) ’
0 tzl(l)l‘lz(z)—1‘21(2)1‘12(1)

The versal family is given as the cokernel of the morphism

A2 0 H | ®A Hpjp®A
Vilo a2 Hy @A Hyp®A)

H(V,Vp) =

B < 1®(x,y) l‘12<1)®(1,0)+l12(2)®<0,1)>
Y= aie 1,0 +m@e 01 19 (x,y) '

Now, as k[I" ( ) , ¢ : H— k[I'] sends both #5;(1) and #5;(2) to 0. The isomorphism classes of

indecomposable A[G]-modules with representation type I are thus given by

(x y 00 _(x ¥y 00
V’(—l —txy)’vm(o -1 x y)°

1 0
0 -1
formal moduli of the (worst) module V;, following the algorithm in [2]. We find

The inherited group action is V,; = on k. To find Simp(I"), we start by computing the local

Exth_(Vi,V;) = Dery(A,Endg (1)), Triv = {6|6< = (o §)0m=(0 ") }
by using (in particular) the fact that xy = yx in A. Then H(V;)™ = k[v,w] with versal family
X y —w —w(t+v)
1 —(t+v) «x y
indecomposable module V,,, w # 0 gives a simple two-dimensional A-G-module given by x> = w, xy =
(t +v)w, y* = (t +v)*w. This gives an embedding A® = k[so,s1,52]/ (5051 — 53) = k[x>,xy,*] — k[v,w]
inducing the morphism Simpp — Spec(Ag) which is the ordinary blowup of the singular point. The

exceptional fibre is <_x1 f ; 2 2) UV 2P

> , computed by again using the fact that xy = yxin A. While w = 0 gives the

REFERENCES

—_

Eriksen, E. An introduction to noncommutative deformations of modules. Lect. Notes Pure Appl. Math., 2005, 243(2), 90-126.

2. Laudal, O. A. Matric Massey products and formal moduli I. In Algebra, Algebraic Topology and Their Interactions (Roos, J.-E.,
ed.). Lecture Notes in Math., 1183, 218-240. Springer Verlag, 1986.

3. Laudal, O. A. Noncommutative deformations of modules. Homology Homotopy Appl., 2002, 4(2), 357-396.

4. Laudal, O. A. Noncommutative algebraic geometry. Rev. Mat. Iberoamericana, 2003, 19(2), 509-580.

5. Siqveland, A. The method of computing formal moduli. J. Algebra, 2001, 241 292-327.

6. Sigveland, A. Global Matric Massey products and the compactified Jacobian of the Eg-singularity. J. Algebra, 2001, 241,

259-291.
7. Sigveland, A. A standard example in noncommutative deformation theory. J. Gen. Lie Theory Appl., 2008, 2(3), 251-255.



A. Sigveland: Noncommutative orbit spaces 369

Riihmatoimed, orbiitruumid ja mittekommutatiivne deformatsiooniteooria
Arvid Siqgveland

On vaadeldud riihma G toimet suvalisel k-muutkonnal X = Spec(A). T66s on defineeritud A—G-mooduleid
ja nende deformatsiooniteooriat. On tdestatud, et see deformatsiooniteooria on ekvivalentne moodulite
deformatsiooniteooriaga iile mittekommutatiivse k-algebra A[G] = A$G. Orbiitide klassifikatsiooni vdib siis
uurida iile kommutatiivse ringi ja t60s on antud selle klassifikatsioon tsiikliliste singulaarsuste muutkonnal.



