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Abstract. Consider the action of a group G on an ordinary commutative k-variety X = Spec(A). In this note we define the category
of A–G-modules and their deformation theory. We then prove that this deformation theory is equivalent to the deformation theory
of modules over the noncommutative k-algebra A[G] = A]G. The classification of orbits can then be studied over a commutative
ring, and we give an example of this on surface cyclic singularities.
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1. INTRODUCTION

Consider the action of a group G on an ordinary commutative k-variety X = Spec(A). We define the category
of A–G-modules, Definition 2.1, and their deformation theory. We then prove that this deformation theory is
equivalent to the deformation theory of modules over the noncommutative k-algebra A[G] = A]G. Thus the
noncommutative moduli of the one-sided A[G]-modules can be computed as the noncommutative moduli
of A-modules with A commutative, invariant under the (dual) action of the group G, which simplify the
computations significantly. The orbit closure of x ∈ X corresponds to an A[G]-module Mx = A/ax, so that
the classification of closures of orbits can be studied locally by deformation theory of Mx as an A–G-module.
Finally, we work through an example of the noncommutative blowup of cyclic surface singularities.

2. MODULES WITH GROUP ACTIONS

Let k be an algebraically closed field of characteristic 0. Let G be a finite dimensional reductive algebraic
group acting on an affine scheme X = SpecA, A a finitely generated (commutative) k-algebra. Let ax be the
ideal of the closure of the orbit of x and let G→ Autk(A) sending g to ∇g be the induced action of G on A.
Then, as the ideal ax is invariant under the action of G on A, we get an induced action on A/ax. The skew
group algebra over A is denoted A[G]. It consists of all formal sums ∑

g∈G
agg with product defined by

(a1g1)(a2g2) = a1∇g1(a2)g1g2.

For later use notice that this definition extends the definition of the group algebra over k, k[G]. Now, the
action of A[G] on Mx given by (ag)m = a∇g(m) defines Mx as an A[G]-module because
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((a1g1)(a2g2))m = (a1∇g1(a2)g1g2)m = a1∇g1(a2)∇g1g2(m)
= a1∇g1(a2∇g2(m)) = a1g1((a2g2)m).

Thus the classification of orbits is the classification of the corresponding A[G]-modules Mx. The main issue
of this section is the following definition and the lemma proved by the argument above:

Definition 2.1. An A–G-module is an A module with a G-action such that the two actions commute, that is

∇g(am) = ∇g(a)∇g(m).

Lemma 2.1. The category of A–G-modules and the category of A[G]-modules are equivalent.

3. DEFORMATION THEORY

For A a not necessarily commutative k-algebra, V = {Vi}r
i=1 a swarm of right A-modules (which means that

dimk Ext1A(Vi,Vj) < ∞ for 1≤ i, j ≤ r), there exists a well-known deformation theory, see [3]. Let ar be the
category of r-pointed artinian k-algebras. It consists of the commutative diagrams

kr //

Id ÂÂ@
@@

@@
@@

R
ρ

²²
kr

such that rad(R) = ker(ρ) fulfills rad(R)n = 0 for some n. Generalizing the commutative case, we set âr
equal to the category of complete r-pointed k-algebras R̂ such that R̂/ rad(R̂)n is in ar for all n. Letting
Ri j = eiRe j, it is easy to see that R is isomorphic to the matrix algebra (Ri j). The noncommutative
deformation functor DefV : ar → Sets is given by

DefV (R) = {R⊗k Aop-modules VR|VR ∼=R (Ri j⊗k Vj), ki⊗R VR ∼= Vi}/∼= .

Let VR ∈ DefV (R). The left R-module structure is the trivial one, and the right A-module structure is given
by the morphisms σR

a : Vi → Ri j ⊗k Vj. As in the commutative case, an (r-pointed) morphism φ : S ³ R
is small if kerφ · rad(S) = rad(S) · kerφ = 0, and for such morphisms, lifting the σ R directly to S, the
associativity condition gives the obstruction class o(φ ,VR) = (σ S

ab − σS
a σS

b ) ∈ I ⊗k HH2(A,Homk(Vi,Vj))
where I = (Ii j) = kerφ , such that VR can be lifted to VS if and only if o(VR,φ) = 0, see [3] or [1] for
details and complete proofs. Obviously, computations are much easier if A is a commutative k-algebra.
This is possible to achieve when working with G-actions and orbit spaces. For a family V = {Vi}r

i=1 of
A–G-modules, we put

DefG
V (R) = {VR ∈ DefV (R)|∃A−G-structure ∇ : G→ End(VR)} ⊆ DefV (R).

In [2,3] Laudal constructs the local formal moduli of A-modules. In [5,6] applications in the commutative
case are given, and in [7] an easy noncommutative example is worked through. In these cites we start with
the k-algebra k[ε] = k[ε]/ε2 and use the tangent space

DefV (k[ε ])∼= (HH1(A,Homk(Vi,Vj)))∼= Ext1A(M,M)

as dual basis for the local formal moduli Ĥ. The relations among the base elements are given by the
obstruction space

HH2(A,Homk(Vi,Vj))∼= (Ext2A(Vi,Vj)).
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4. GENERALIZED MATRIX MASSEY PRODUCTS (GMMP)

Let {Vi}r
i=1 be a given swarm of A-modules. For each i, choose free resolutions 0 ← Vi

di,0← Li,0
di,1← Li,1

di,2←
Li,2 ← ··· . We write

L. =




L1,. 0 · · · 0
0 L2,. · · · 0
...

... · · · ...
0 0 · · · Lr,.




and we can prove Lemma 4.1 following the proof in [6] step by step:

Lemma 4.1. Let VS ∈ DefV (S) and let φ : R → S be a small surjection. Then there exists a resolution
LS

. = (S⊗k L.,dS
. ) lifting the complex L., and to give a lifting VR of VS is equivalent to lift the complex LS

.

to LR
. .

Proof. Generalized from the commutative case, MR ∼=R (Ri j⊗k M j) is equivalent with MR R-flat. Using this,
and tensoring the sequence 0→ I → R→ S → 0 with MR over R, gives the sequence 0→ I⊗k M →MR →
MS → 0. Ordinary diagram chasing then proves that the resolution of MS can be lifted to an R-complex L.R

given the resolution L.S of MS. Conversely, given a lifting L.R of the complex L.S of MS, the long exact
sequence proves that this complex is a resolution, and that MR = H0(L.R) is a lifting of MS.

If M is an A–G-module where G acts rationally on A and M is a rational G-module, finitely generated
as an A-module, then an A-free (projective) resolution of M can be lifted to an A–G-free resolution, that is a
commutative diagram

0 Voo

∇g

²²

An0oo

∇g,0

²²

An1oo

∇g,1

²²

An2oo

∇g,2

²²

· · ·oo

0 Voo An0oo An1oo An2oo · · ·oo

This proves that Lemma 4.1 is a particular case of the same lemma with DefV (S) replaced by DefG
V (S).

In [7] we give the definition of GMMP. The tangent space of the deformation functor is DefG
V (E) ∼=

(Ext1A−G(Vi,Vj)), where E is the noncommutative ring of dual numbers, i.e. E = k < ti j > /(ti j)2. For
computations we note that when G is reductive and finite dimensional, HomA−G(Vi,Vj) ∼= HomA(Vi,Vj)G

and Ext1A−G(Vi,Vj) ∼= Ext1A(Vi,Vj)G, G acting by conjugation. Given a small surjection φ : R → S, with
kernel I = (Ii j), lift d.S on S⊗k L. to d.R on R⊗k L. in the obvious way. Then o(φ ,VS) = {dR

i dR
i−1}i≥1 ∈

(Ii j⊗k Ext2A−G(Vi,Vj)). By the definition of GMMP in [7], these can be read out of the coefficients of a basis
in the obstruction space above.

5. THE MCKAY CORRESPONDENCE

Let

G = Z2 =<

(−1 0
0 −1

)
>=< τ >

act on A2
C by τ(a,b) = (−a,−b). Our goal is to classify the G-orbits, and to find a compactification

M̃G ↪→ P2
C of the orbit spaceMG. The existing partial solution is

MG = Spec(k[x2,xy,y2]) = Spec(AG), A = k[x,y].
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This is an orbit space, but not moduli. Consider the point P = (a,b) = (
√

w, t
√

w), w 6= 0. Then

o(P) = {(√w, t
√

w),(−√w,−t
√

w)}= Z(It),

where It = (x2−w,y− tx). We compute the local formal moduli of the A–G-module Mt = A/It from the
diagram

0 A/Itoo Aoo An1oo

φ
²²

An2oo

≡0}}{{
{{

{{
{{

· · ·oo

A/It

where the upper row is a resolution, we see that in general, Ext1A(Mt ,Mt)∼= HomA(It/I2
t ,A/It) with the action

of G given by conjugation, that is the composition given in the sequence

It
∇g // It

φ // A/It
∇g−1

// A/It .

We get

(x2−w,y− tx)
∇g // (x2−w,y− tx)

φ // k[x,y]/It
∇g−1

// k[x,y]/It

so that φ = (α,βx) = α(1,0)+β (0,x) is invariant under the action of G. Writing this up in complex form,
we get

0 Mtoo Aoo A2
d0oo

ξ 1
1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ξ 1
2ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
A

d1oo

ξ 2
1

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ξ 2
2ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
0oo

0 Mtoo A
d0

oo A2oo A
d1

oo 0oo

d0 = (x2−w y− tx), d1 =
(

y− tx
w− x2

)
, ξ 1

1 = (1 0), ξ 1
2 = (0 x), ξ 2

1 =
(

0
−1

)
, ξ 2

2 =
(

x
0

)
.

We find ξ 1
1 ξ 2

1 = ξ 1
2 ξ 2

2 = ξ 1
1 ξ 2

2 + ξ 1
2 ξ 2

1 = 0, which means that all cup-products are identically zero.
Thus ĤMt = k[[t1, t2]] with algebraization HMt = k[t1, t2]. Because the particular point 0 = (0,0) corresponds
to M0 = k[x,y]/(x,y) with Ext1A−G(M0,M0) = 0, we understand that M0 is a singular point, so that the
modulus is MG = (A2 − {0}) ∪ {pt}. At least in this case, resolving the singularity is a process of
compactifying. Given a family V = {Vi}r

i=1 of simple A-modules, an A-module E with composition series
E = E0 ⊃ E1 ⊃ ·· · ⊃ Ei ⊃ Ei−1 ⊃ ·· · ⊃ Er ⊃ 0, where Ek/Ek−1 = Vik , is called an iterated extension of the
family V , and the graph Γ(E) of E (the representation type) is the graph with nodes in correspondence
with V and arrows ρip,ip+1 connecting the nodes Vip and Vip+1 , identifying arrows if the corresponding
extensions are equivalent. In [3] Laudal solves the problem of classifying all indecomposable modules
E with fixed extension graph Γ. He proves that for every E there exists a morphism φ : H(V ) → k[Γ]
such that E ∼= M̃⊗φ k[Γ], where M̃ is the versal family, resulting in a noncommutative scheme Ind(Γ).
In [4], he then proves that the set Simpn(A) of n-dimensional simple representations of A with the
Jacobson topology has a natural scheme structure. He also proves that when Γ is a representation graph
of dimension n = ∑V∈Γ dimk V , then the set Simp(Γ) = Simpn(A)∪ Ind(Γ) has a natural scheme structure
with the Jacobson topology, which is a compactification of Simpn(A). In our present example, we let
Γ be the representation type of the regular representation k[G]. We construct the composition series
k[G]∼= k[τ]/(τ2−1)⊃ (τ−1)/(τ2−1)⊃ 0. Thus we get V0 = k[τ ]/(τ−1)∼= k, V1 = (τ−1)/(τ2−1)∼= k

and the action ∇i
τ of τ on Vi is given by ∇i

τ = (−1)i. From the sequence (x,y)
∇τ // (x,y)

φ // Vi
∇τ−1 // Vi
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we immediately see that Ext1A−G(Vi,Vj) = α(1,0) + β (0,1) when i 6= j, 0 if i = j. Writing up the
corresponding diagram and multiplying as in the previous example, we get

H(V1,V2) =

(
k < t12(1), t12(2) >

< t21(1), t21(2) > k

)

(
t12(1)t21(2)− t12(2)t21(1) 0

0 t21(1)t12(2)− t21(2)t12(1)

) .

The versal family is given as the cokernel of the morphism

ψ :
(

A2 0
0 A2

)
→

(
H11⊗A H12⊗A
H21⊗A H22⊗A

)
,

ψ =
(

1⊗ (x,y) t12(1)⊗ (1,0)+ t12(2)⊗ (0,1)
t21(1)⊗ (1,0)+ t21(2)⊗ (0,1) 1⊗ (x,y)

)
.

Now, as k[Γ] =
(

k k
0 k

)
, φ : H → k[Γ] sends both t21(1) and t21(2) to 0. The isomorphism classes of

indecomposable A[G]-modules with representation type Γ are thus given by

Vt =
(

x y 0 0
−1 −t x y

)
,V∞ =

(
x y 0 0
0 −1 x y

)
.

The inherited group action is ∇τ =
(

1 0
0 −1

)
on k2. To find Simp(Γ), we start by computing the local

formal moduli of the (worst) module Vt , following the algorithm in [2]. We find

Ext1A−G(Vt ,Vt) = Derk(A,Endk(Vt))/Triv =

{
δ |δ (x) =

(
0 w
0 0

)
,δ (y) =

(
0 w(t + v)
v 0

)}

by using (in particular) the fact that xy = yx in A. Then H(Vt)com = k[v,w] with versal family(
x y −w −w(t + v)
1 −(t + v) x y

)
, computed by again using the fact that xy = yx in A. While w = 0 gives the

indecomposable module Vv+t , w 6= 0 gives a simple two-dimensional A–G-module given by x2 = w, xy =
(t + v)w, y2 = (t + v)2w. This gives an embedding AG = k[s0,s1,s2]/(s0s1 − s2

2) = k[x2,xy,y2] ↪→ k[v,w]
inducing the morphism SimpΓ → Spec(AG) which is the ordinary blowup of the singular point. The

exceptional fibre is
(

x y 0 0
−1 −t x y

)
∪V∞ ∼= P1.
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Rühmatoimed, orbiitruumid ja mittekommutatiivne deformatsiooniteooria

Arvid Siqveland

On vaadeldud rühma G toimet suvalisel k-muutkonnal X = Spec(A). Töös on defineeritud A–G-mooduleid
ja nende deformatsiooniteooriat. On tõestatud, et see deformatsiooniteooria on ekvivalentne moodulite
deformatsiooniteooriaga üle mittekommutatiivse k-algebra A[G] = A]G. Orbiitide klassifikatsiooni võib siis
uurida üle kommutatiivse ringi ja töös on antud selle klassifikatsioon tsükliliste singulaarsuste muutkonnal.


