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Abstract. We recall the description of natural transformations of semiholonomic jet functors Jr defined on the categories
M fm ×M f and FM m,n. Up to order three, exact coordinate formulae are known, for general order several related results
are reminded. We also show an application of semiholonomic jet transformations to prolongation of general connections.
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1. INTRODUCTION

Let FM m,n be the category of fibred manifolds with m-dimensional bases, n-dimensional fibres, and
locally invertible fibre-preserving mappings. Further, let M fm and M f be the category of m-dimensional
manifolds endowed with local diffeomorphisms and the category of all manifolds and all smooth mappings,
respectively. It is well known that suitable models for many physical phenomena can be found among the
objects of FM m,n. Important characteristics of physical laws can be expressed by means of geometrical
objects like jets, connections, and natural operators. This has been widely studied and can be found in
e.g. [7].

This paper is devoted to natural transformations of semiholonomic jet functors Jr defined on categories
M fm ×M f and FM m,n and their applications to prolongation of connections. For r ≤ 3, exact
coordinate formulae are known, for general order r we recall several results concerning transformations
of nonholonomic, semiholonomic, and holonomic jet functors and their combinations.

In the last section, we show a direct application of jet transformations to prolongation of general
connections. For order two, we recall a formula of all natural operators transforming first-order general
connection into second-order general connection by means of the so-called Ehresmann prolongation. For
higher orders the problem becomes technically complicated and remains open.

We note that differential prolongations of different objects, including connections, are widely studied.
Some other procedures like immersion of connections in the space of infinite jets and further applications
can be found in [1,2].
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2. FOUNDATIONS

Let p : Y → M be a fibred manifold. By (xi), i = 1, . . . ,m we denote local coordinates on M and by
(xi,yp), i = 1, . . . ,m, p = 1, . . . ,n local coordinates on Y . Denote by JrY → M the r-th jet prolongation
of p : Y →M, that is the space of r-jets of local sections M →Y . In what follows, JrY will be called the r-th
holonomic prolongation of Y .

Recall that r-th nonholonomic prolongation J̃rY of Y is defined by iteration

J̃1Y = J1Y, J̃rY = J1(J̃r−1Y →M).

Clearly, we have an inclusion JrY ⊂ J̃rY given by jr
xγ 7→ j1

x( jr−1γ). Further, r-th semiholonomic
prolongation JrY ⊂ J̃rY is defined by the following induction. First, by β1 = βY we denote the projection
J1Y → Y and by βr = βJ̃r−1Y the projection J̃rY = J1J̃r−1Y → J̃r−1Y, r = 2,3, . . . . If we set J1Y = J1Y and
assume we have Jr−1Y ⊂ J̃r−1Y such that the restriction of the projection βr−1 : J̃r−1Y → J̃r−2Y maps Jr−1Y
into Jr−2Y, we can construct J1βr−1 : J1Jr−1Y → J1Jr−2Y and define

JrY = {A ∈ J1Jr−1Y ; βr(A) ∈ Jr−1Y}.

We recall that the induced coordinates on the holonomic prolongation JrY are given by (xi,yp
α), where

α is a multiindex of range m satisfying |α| ≤ r. Clearly, the coordinates yp
α on JrY are characterized by

full symmetry in the indices of α . Having the nonholonomic prolongation J̃rY constructed by iteration, we
define local coordinates inductively as follows:
1. Suppose that the coordinates on J̃r−1Y are of the form

(xi,yp
k1...kr−1

), k1, . . . ,kr−1 = 0,1, . . . ,m.

2. We define the induced coordinates on J̃rY by

(xi,yp
k1...kr−10 = yp

k1...kr−1
,yp

k1...kr−1i =
∂

∂xi yp
k1...kr−1

).

It remains to describe coordinates on the semiholonomic prolongation JrY . Let (k1, . . . ,kr), k1, . . . ,kr =
0,1, . . . ,m be a sequence of indices and denote by 〈k1, . . . ,ks〉, s ≤ r the sequence of non-zero indices in
(k1, . . . ,kr) respecting the order. Obviously, Jr,Jr, and J̃r are bundle functors on the category FM m,n.

On the other hand, J̃r, Jr, and Jr can be also considered as bundle functors on the product category
M fm ×M f . Indeed, the space J̃r(M,N) of nonholonomic r-jets of M into N is exactly the r-th
nonholonomic prolongation of a product fibred manifold M×N → M. For every local diffeomorphism
f : M →M and every smooth map g : N → N we define

Jr( f ,g) : Jr(M,N)→ Jr(M,N) by Jr( f ,g)(X) = ( jr
yg)◦X ◦ ( jr

x f )−1,

where x = αX and y = βX are the source and target of X ∈ Jr(M,N), respectively, see [7].
According to [7], two maps f ,g : M → N determine the same r-jet at the point x ∈M, i.e. jr

x f = jr
xg, if

and only if all partial derivatives up to order r of the components f p and gp of their coordinate expressions
coincide at x. Thus if we use the notation zp

i1...im = ∂ m f
∂xi1 ···∂xim

, local coordinates on Jr(M,N) are given by

(xi,yp,zp
α), where α is a multiindex of range dimM satisfying |α| ≤ r, xi and yp are local coordinates on M

and N, respectively. Similarly to the jet prolongations of a fibred manifold, local coordinates on J̃r(M,N)
include zero indices in the subscripts and there is no symmetry involved, while in the semiholonomic case
the zero indices are eliminated. For example, for r = 2 we have the coordinate chart (xi,yp,zp

0i,z
p
i ,zp

i j) on

J̃2(M,N). Then J2(M,N) is characterized by zp
0i = zp

i and J2(M,N) by zp
0i = zp

i , zp
i j = zp

ji.
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3. JETS ON THE CATEGORY M fm×M f

We first recall some results about second- and third-order semiholonomic jet transformations. For the
functor J2 defined on the category M fm ×M f , we consider an involutory map i : J2 → J2 introduced
by Pradines [9]. The coordinate effect of i consists in the exchange of the subscripts of zp

i j. Kolář and
Vosmanská proved in [6]

Proposition 3.1. All natural transformations J2 → J2 form two one-parameter families

t(X− i(X))+ i(X), k(X− i(X)), k, t ∈ R.

The following description of all natural transformations J3 → J3 between semiholonomic 3-jet functors
defined on the product category M fm×M f can be found in [12].

Proposition 3.2. The only natural transformations J3 → J3 are the identity and the contraction, i.e. the
map

X 7→ j3
αX β̂X ,

where β̂X denotes the constant map of M into βX ∈ N, βX and αX being the target and source of
X ∈ J3(M,N), respectively.

Remark. According to [12], transformations Jr → Jr
,r ≥ 4 of the functor Jr defined on the category

M fm×M f are not generally trivial and exact results are not known.

Finally, we recall the transformations of holonomic jet functor Jr defined on the category M fm×M f ,
see [7].

Proposition 3.3. For r≥ 2 the only natural transformations Jr → Jr are the identity and the contraction. For
r = 1, all natural transformations J1 → J1 form the one-parameter family of homotheties X 7→ cX , c ∈ R.

4. JETS ON THE CATEGORY FM m,n

Now we consider the functor J2 on the category FM m,n, i.e. we discuss semiholonomic 2-jets of local
sections of a fibred manifold Y →M. For the iteration of functor J1, Modugno introduced an exchange map
eΛ : J1J1Y → J1J1Y depending on the linear connection Λ defined on the base manifold M, see [8]. If we
consider the restriction of map eΛ to the subbundle J2Y ⊂ J1J1Y, we obtain a natural map e : J2Y → J2Y .
From the coordinate formula of eΛ it is easy to derive that e does not depend on any linear connection on
the base manifold, see [7]. Given local coordinates (xi,yp,yp

i ,yp
i j) on J2Y , the map e : J2Y → J2Y has the

coordinate expression
yp

i = yp
i , yp

i j = yp
ji.

Kolář and Modugno proved in [5]

Proposition 4.1. All natural transformations J2 → J2 form a one-parameter family

X 7→ t(X− e(X))+ e(X), t ∈ R.

Now we use the fact that the space J3(M,N) coincides with the third semiholonomic prolongation of
the product manifold M×N →M and, consequently, all natural transformations J3 → J3 of the functor J3

defined on the category FM m,n are just restrictions of the transformations from Proposition 3.2. As the
contraction cannot be restricted we derive
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Corollary 4.1. The only natural transformation J3 → J3 of the functor J3 defined on the category FM m,n
is the identity.

Now we show several consequences on the transformations of semiholonomic onto holonomic jets.
Corollary 4.1 and the fact that J3Y ⊂→ J3Y directly implies

Corollary 4.2. There is no natural transformation J3 → J3 between third-order semiholonomic and
holonomic jet functors.

On the other hand, there exists a natural transformation J2 → J2 given by symmetrization. More
precisely, [3] reads that all FM m,n-natural transformations J2Y → J2Y with dimM ≥ 2 are of the form

c(2)(σ) := σ ′+Sym(σ −σ ′),

where σ ∈ J2Y is arbitrary, σ ′ ∈ J2Y is such an element that the jet projections π2
1(σ) and π2

1 (σ ′) coincide,
and Sym :⊗2T ∗M⊗VY → S2T ∗M⊗VY is induced by symmetrization.

Remark. A complete description of all transformations Jr → Jr for any r can be found in [3]. The authors
proved in a very general way that for dimM ≥ 2 and r ≥ 3 there is no natural transformation of given type
and, thus, Corollary 4.2 and Corollary 4.3 are consequences of their considerations.

Finally, there is an easy consequence on the transformation of nonholonomic onto holonomic jets. The
inclusion J3Y ⊆ J̃3Y together with Corollary 4.2 directly implies

Corollary 4.3. There is no natural transformation J̃3 → J3 between third-order nonholonomic and
holonomic jet functors.

5. PROLONGATION OF CONNECTIONS

We recall that a general connection on the fibre bundle Y →M is a vector-valued 1-form Γ with values in the
vertical bundle VY such that Γ ◦Γ = Γ and ImΓ = VY. Thus any connection on the fibre bundle Y → M is
determined by horizontal projection χ = idTY −Γ, or by horizontal subspaces χ(TyY )⊂ TyY in the individual
tangent spaces, i.e. by horizontal distribution. But every horizontal subspace χ(TyY ) is complementary to
the vertical subspace VyY and therefore it is canonically identified with a unique element j1

y s ∈ J1
y Y. On

the other hand, each j1
y s ∈ J1

y Y determines a subspace in TyY complementary to VyY. This leads us to the
equivalent definition: a general connection on a fibred manifold p : Y → M is a section Γ : Y → J1Y of
the first jet prolongation J1Y → Y. Analogously, a higher-order general connection is a section Y → JrY ,
r > 1, where holonomic jet prolongation JrY can be replaced by semiholonomic or nonholonomic one.
Consequently, a higher-order connection is called holonomic, semiholonomic, or nonholonomic according
to the type of target space.

Given two higher-order connections Γ : Y → J̃rY and Γ : Y → J̃sY, the product of Γ and Γ is the (r+s)-th
order connection Γ∗Γ : Y → J̃r+sY defined by

Γ∗Γ = J̃sΓ◦Γ.

As an example we show the coordinate expression of an arbitrary nonholonomic second-order
connection and of the product of two first-order connections. The coordinate form of ∆ : Y → J̃2Y is

yp
i = F p

i (x,y), yp
0i = Gp

i (x,y), yp
i j = H p

i j(x,y),
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where F,G,H are arbitrary smooth functions. Further, if the coordinate expressions of two first-order
connections Γ,Γ : Y → J1Y are

Γ : yp
i = F p

i (x,y), Γ : yp
i = Gp

i (x,y),

then the second-order connection Γ∗Γ : Y → J̃2Y has equations

yp
i = F p

i , yp
0i = Gp

i , yp
i j =

∂F p
i

∂x j +
∂F p

i
∂yq Gq

j .

If both Γ and Γ are of the first order, then Γ∗Γ : Y → J̃2Y is semiholonomic if and only if Γ = Γ, and Γ∗Γ
is holonomic if and only if Γ is curvature free, [4,11].

Considering a connection Γ : Y → J1Y, we can define an r-th order connection
Γ(r−1) : Y → J̃rY by

Γ(1) := Γ∗Γ = J1Γ◦Γ, Γ(r−1) := Γ(r−2) ∗Γ = J1Γ(r−2) ◦Γ.

The connection Γ(r−1) is called the (r−1)-st prolongation of Γ in the sense of Ehresmann, shortly (r−1)-st
Ehresmann prolongation. By [4], the values of Γ(r−1) lie in the semiholonomic prolongation JrY , and Γ(r−1)

is holonomic if and only if Γ is curvature free, [11].
Now, let e : J2Y → J2Y be the map described in Section 3. Then we recall, see [10]:

Proposition 5.1. All natural operators transforming first-order connection Γ : Y → J1Y into second-order
semiholonomic connection Y → J2Y form a one-parameter family

Γ 7→ k · (Γ∗Γ)+(1− k) · e(Γ∗Γ), k ∈ R.

In other words, all natural operators from Proposition 5.1 can be obtained from the Ehresmann prolongation
Γ∗Γ by applying all natural transformations J2 → J2 from Proposition 4.1.

Taking into account the natural operators transforming first-order connections into r-th order
semiholonomic connections with r ≥ 3, full classification becomes technically complicated and thus it
remains open. As an example, if a first-order connection Γ is given by yp

i = Gp
i , the coordinate expression

of Γ(2) = Γ∗Γ∗Γ is of the form

yp
i = Gp

i , yp
i j =

∂Gp
i

∂x j +
∂Gp

i
∂yq Gq

j ,

yp
i jk =

∂ 2Gp
i

∂x j∂xk +
∂ 2Gp

i
∂x j∂yq Gq

k +
∂ 2Gp

i
∂yq∂xk Gq

j +
∂ 2Gp

i
∂yq∂yr Gr

kGq
j +

∂Gp
i

∂yq

∂Gq
j

∂xk .
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10. Vašı́k, P. On the Ehresmann Prolongation. Ann. Univ. Mariae Curie Sklodowska, 2007, LXI, A, 145–153.
11. Virsik, G. On the holonomity of higher order connections. Cahiers Topol. Géom. Diff., 1971, 12, 197–212.
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Poolholonoomsete 2- ja 3-džettide teisendused ning seostuste poolholonoomne
jätkamine

Petr Vašı́k

On meenutatud poolholonoomsete džettide funktori Jr naturaalsete teisenduste kirjeldust, kusjuures funktor
on määratud kategooriatel M fm×M f ja FM m,n. Kuni kolmandat järku täpsed valemid koordinaatides
on teada, on meenutatud mõned sellega seotud tulemused suvalise järgu korral. On näidatud, kuidas saab
džettide poolholonoomseid teisendusi kasutada üldiste seostuste jätkamiseks.


