
Proceedings of the Estonian Academy of Sciences, 2012, 61, 4, 296–305 
 

296 

Proceedings of the Estonian Academy of Sciences,  
2012, 61, 4, 296–305 

doi: 10.3176/proc.2012.4.04 
Available online at www.eap.ee/proceedings 

 
 
 
 
 
 
 

Determination  of  residual  stresses  and  material  properties  by  an   
energy-based  method  using  artificial  neural  networks 

 
Hongping Jin, Wenyu Yang*, and Lin Yan 

 
The State Key Lab of Digital Manufacturing Equipment and Technology, Mechanical Science and Engineering, Huazhong 
University of Science and Technology, Wuhan 430074, China 
 
 
Received 29 July 2011, revised 20 December 2011, accepted 4 January 2012, available online 20 November 2012 
 
Abstract. With the help of an energy-based method and dimensional analysis, an artificial neural network model is constructed to 
extract the residual stress and material properties using spherical indentation. The relationships between the work of residual 
stress, the residual stress, and material properties are numerically calibrated through training and validation of the artificial neural 
network (ANN) model. They enable the direct mapping of the characteristics of the indentation parameters to the equi-biaxial 
uniform residual stress and the elastic–plastic material properties. The proposed ANN can quickly and effectively predict the 
residual stress and material properties based on the load–depth curve of spherical indentation. 
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1. INTRODUCTION 

* 
Determining the residual stress is crucial in a wide 
variety of systems because residual stress in materials 
and structures is associated with fatigue, corrosion, 
wear, and failures of the systems. The traditional 
methods of measuring residual stress can be divided into 
two categories: destructive and non-destructive methods. 
Destructive methods, including hole-drilling and saw-
cutting techniques, etc., can generally be used to 
measure residual stress quantitatively without any 
reference sample, but they have destructive charac-
teristics. Non-destructive methods, including X-ray and 
neutron diffraction, etc., can measure the residual stress 
without destruction. However, they are generally 
expensive and complex. Moreover, they are highly 
sensitive to such metallurgical factors as grain size and 
texture [1]. 

Instrumented indentation has been used to measure 
the mechanical properties of materials [2–7], such as 
hardness ,H  elastic modulus ,E  strain-hardening expo-
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nent ,n  and yield strength y .σ  During indentation, a 
rigid indenter is penetrated normally into a homo-
geneous solid while the indentation load F  and depth 
h  are continuously recorded during one complete cycle 
of loading and unloading. Because the indentation load–
depth curve reflects the behaviour of the material under 
indentation loading and unloading, indentation can be 
used to evaluate material properties. However, finite 
element model (FEM) and experimental investigations 
have shown that residual stress has a significant effect 
on the load–depth curve. General observations reveal 
that tensile stress tends to stretch out the load–depth 
curves, a smaller force can push the indenter down to 
the same indentation depth, while compressive stress 
compresses the curves, and thus a larger load is required 
to achieve the same indentation depth [8]. This is the 
reason why indentation can also be used to evaluate the 
residual stress. 

Several methodologies have been introduced to 
estimate residual stress using instrumented indentation. 
The earliest effort was to examine the relationship 
between hardness and residual stress. The results 
suggest that hardness measurement may be used to 
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characterize residual stress in materials [8,9]. However, 
the change in the hardness by the residual stress is less 
than 10% of its unstressed value, and the effects of 
compressive stress are often not as large as those of 
tensile stress. In addition, the effects of residual stress 
on the indentation profile are relatively large, e.g., the 
residual stress can change the state of pile-up or sink-in, 
which causes a large error in the area measurement, and 
these errors result in a larger error in the residual stress 
measurement because determination of the hardness 
requires measurement of the indentation area. 

Suresh and Giannakopoulos [8] used the difference 
in the contact area of stressed and unstressed specimens 
indented to the same depth to determine the residual 
stress. Based on this method, Lee and Kwon [10] 
developed a new method to estimate residual stress by 
analysing the surface stress effect on contact pressure in 
terms of shear plasticity during depth-controlled 
indentation. Comparison with the results of conven-
tional saw-cutting tests showed that the indentation test 
could be effectively and easily used for the assessment 
of residual stress. However, their methods for residual 
stress determination require an unstressed reference 
sample and the residual indentation area needs to be 
measured. 

Chen et al. [11], Zhao et al. [12], and Yan et al. [13] 
proposed alternative methods to measure the residual 
stress and perfectly elastic–plastic properties by using 
dimensional analysis and reverse analysis for conical 
microindentation, respectively. Their methods do not 
require measurement of a contact radius and a reference 
stress-free material. However, the accuracy of such 
approaches is highly dependent on the precision of the 
curve or surface fitting procedure as well as the robust-
ness of the reverse analysis algorithm. 

Xu and Li [14] found that the ratio of elastic 
recovery displacement of nanoindentation to the 
maximum penetration depth has a linear relationship to 
the ratio of residual stress to yield stress. Therefore, 
they presented an empirical model for residual stress 
determination from the elastic recovery displacement of 
nanoindentation. However, for very soft materials, this 
ratio is basically independent of the residual stress. 
Thus, this model may be suitable for the determination 
of residual stress only in very hard materials. 

Based on the premise that elastic unloading 
responses during indentation are fully independent of 
residual stress, Wang et al. [15] derived a formula for 
determining the residual stress using sharp indentation 
and the energy method. This model assumes that there is 
no variation in the indent angle after the removal of the 
load. However, it is known that the surface profile 
undergoes a large change during the unloading stage 
due to the elastic recovery of the material. For this 
reason, this assumption would overestimate the residual 
stress. 

Dean et al. [16] found that the peak indentation load 
is fairly sensitive to the presence of residual stress and 
they used nanoindentation to measure residual stresses 
in surface layers. They pointed out that this technique  
is well suited for the mapping of residual stresses over 
the surface of a component because nanoindentation 
involves investigation of relatively small volumes of 
material. They also argued that using hardness as a 
measured parameter to determine residual stress will 
cause difficulties, since the sensitivity of hardness is 
lower and less consistent because the influence of pile-
up on the area of contact is larger. 

Swadener et al. [17] observed that spherical indenta-
tion is more sensitive to stress effects than sharp 
indentation. Thence, they proposed two methods of 
determining biaxial residual stress using spherical 
indentation. One is based on the fact that the contact 
pressure at the onset of yielding is affected by the 
residual stress, which can be analysed by Hertz contact 
mechanics, and then the biaxial stress can be determined 
via a closed form analytical solution. The other is based 
on the empirical observation that the curves represent-
ing the mean contact pressure versus normalized contact 
radius are vertically shifted as compared to the un-
stressed material by an amount very close to the 
magnitude of the residual stress. 

In spite of the seemingly extensive literature on how 
to incorporate residual stress by using indentation, there 
are several shortcomings in these methods. They either 
require measuring the indentation area accurately, or 
only can be used to particular materials, e.g., perfectly 
elastic–plastic materials. In addition, some assumptions 
of the model result in large errors in the residual stress 
measurement. 

Due to the complexity of the contact problem as well 
as high nonlinearity of materials involved in indenta-
tion, closed form solutions for the indentation curve are 
not readily available. Based on the FEM, the polynomial 
function of indentation was established by using the 
dimensional analysis method, but it is highly dependent 
on the precision of the curve or the surface fitting 
procedure. Artificial neural networks (ANNs) are uni-
versal approximations, which have been mathematically 
proved to be able to approximate any continuous non-
linear function arbitrarily well as long as they contain at 
least one hidden layer. Models of ANN have been 
successfully constructed to solve many engineering 
problems. As ANNs do not require a complicated 
mathematical model, they have been widely applied to 
solve some complicated problems of indentation. 
Several researchers [18–23] adopted ANNs to charac-
terize material properties using instrumented indenta-
tion. 

In this paper, the shape of the load–depth curve is 
analysed. Based on the energy method and the 
dimensional analysis method, the database relationship 
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between the energy of residual stress, residual stress, 
and material properties is constructed. Reverse analysis 
using the ANN approach to characterize the mechanical 
properties is established from the finite element simula-
tion results of spherical indentations on elastic–plastic 
strain-hardening materials. The residual stress and 
material properties can be extracted from indentation 
curves using the ANN approach. 

 
 

2. THEORETICAL  ANALYSIS 
 

In an indentation test, an indenter is pressed into the 
specimen’s surface to reach a preset maximum depth or 
a preset maximum force, and then the indenter is 
removed. During this procedure, it is assumed that the 
indented surface is subjected to an equi-biaxial in-plane 
residual stress and that the residual stress is uniform 
over the depth of the indentation. In addition, assuming 
the unloading process is unaffected by the residual 
stress, the indentation has an elastic–plastic loading and 
elastic unloading response. 

Several studies have found that the shape of the 
loading and the unloading curves of the stressed sample 
deviates from the ideal shape of the unstressed sample 
[8,10,14], as shown in Fig. 1. A stressed sample sub-
jected to indentation, if compared to an unstressed one, 
is naturally expected to exhibit a different mechanical 
response in terms of the indentation curve and imprint 
geometry. If the initial state of the residual stress is 
predominantly tensile, the material generally starts 
yielding at a larger depth applied to the indenter for a 
given indentation load, as compared to the case of an 
unstressed specimen; vice versa, if it is compressive. In 
other words, for a given indentation depth, the residual  
 

 

 
 

Fig. 1. Indentation load–depth curves for specimens with and 
without residual stress. 

compressive stress tends to increase the curvature and 
the maximum penetration load will be larger (Fig. 1, 
curve OCD), whereas a residual tensile stress reduces 
the curvature and results in a lower indentation force 
(Fig. 1, curve OEF). Also the amount of material sink-
in/pile-up at the contact boundary turns out to be very 
sensitive to the presence of initial stress [24,25]: 
namely, sink-in increases when the material is subjected 
to tensile stress and pile-up increases in the compressive 
stress case. 

Consider the case of a different residual stress. If the 
residual depth is the same as that of the unstressed 
sample, it should increase the indentation depth for the 
residual compressive stress, or decrease the indentation 
depth for the residual tensile stress. However, in case of 
residual compressive stress, it should extend the curve 
OC and BA in Fig. 1 through to intersect at point G. 
That is, if the indentation depth is t1h  when the sample 
is subjected to the residual compressive stress, after 
complete unloading the residual depth will be r 0 .h  
Similarly, for the case of residual tensile stress, the 
loading curve OE intersects the curve AB at the point H. 
That is, when the indentation depth is t 2h  if the initial 
state of self-stress is tensile, then the residual depth will 
be r 0h  after complete unloading. 

During loading, the area enclosed by the loading 
curves represents the indentation load energy, e.g. the 
area of OAN. When completing unloading, the area 
enclosed by the unloading curves represents the elastic 
recoverable energy, e.g. the area of BAN. When the 
specimen is free of stress, the net area enclosed by the 
loading and unloading curves represents the energy lost 
in plastic deformation, e.g. the area of OAB. 

We will assume equivalence in the plastic energy for 
indents when the residual depth is the same. Thus, when 
the indentation depth is t1h  with the residual com-
pressive stress or t 2h  with the residual tensile stress, 
their plastic energy is the same as that of the indentation 
depth t 0h  with free stress because they have the same 
residual indentation depth r 0 .h  In other words, the 
plastic energies of all of them are in the area of OAB in 
all cases the residual depth is r 0 .h  Because the area of 
OGAB or OHB as shown in Fig. 1 is the sum of the 
energy in plastic deformation and the energy contribu-
tion of the residual stresses, the area of OGA or OAH is 
the energy contribution of the residual stresses r .W  

Dimensional analysis has been successfully used to 
analyse indentation response. Based on dimensional 
analysis and FEM, Cheng and Cheng [26] presented 
several scaling relationships that provide a new insight 
into the shape of indentation curves. 

For the spherical indentation of elastic–plastic 
material, during the loading procedure the indentation 
load F  must be a function Lf  of the following nine 
independent parameters: Young’s modulus ,E  
Poisson’s ratio ν  of the elastic–plastic solid, Young’s 
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modulus i ,E  Poisson’s ratio iν  of the elastic indenter, 
the yield strength y ,σ  the strain-hardening exponent ,n  
the residual stress r ,σ  the indentation depth ,h  and the 
indenter radius ,R  i.e.: 

 

L i i y r( , , , , , , , , ).F f E E n h Rν ν σ σ=             (1) 
 

Using the reduced Young’s modulus: 
 

22
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Equation (1) can be reduced to 
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By applying the Π  theorem in dimensional analysis, 
Eq. (3) can be expressed as 
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where the dimensionless function αΠ  relates the 
indentation response to the mechanical properties and 
indentation parameters. 

The work done by indentation is 
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Because unloading takes place after loading when 
the indenter reaches the maximum indentation depth 

t ,h  the indentation unloading load uF  is a function uf  
of ten independent parameters: 
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Similarly, uF  can be expressed as: 
 

2 r
u y t γ

y y t t

, , , , .E h RF h n
h h

σσ
σ σ

∗ 
= Π   

 
              (7) 

 

The work done by material recovery is 
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Based on Eqs (5) and (8), the work done by residual 
stress and plastic deformation is 
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Thus, in two different indentation depths, e.g. t1h  
and t 0 ,h  the ratio of the work done by residual stress to 
the work done by indentation load is 

 

3 3r
t1 1 t0 0

y y yp1 p0r1

t1 t1 3 r
t1 β1

y y

r

y y

, , ,

, ,

, , . (10)

E Eh n h n
W WW

W W Eh n

E n

σ
σ σ σ

σ
σ σ

σ
σ σ

∗ ∗

ψ ψ

∗

∗

χ

   
Π − Π    −    = =

 
Π   

 
 

= Π   
 

 

 

Combining Eqs (5), (8), (9), and (10) leads to 
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Thus, the two universal dimensionless functions, 1Π  
and 2 ,Π  can be used to relate the indentation response 
to the mechanical properties. 

 
 

3. FINITE  ELEMENT  SIMULATION 
 

In this work, elastic–plastic indentation was simulated 
by using the ABAQUS software on HP workstations 
[27]. The indenter was modelled as a sphere with a 
radius of 0.794 mm, and the specimen was treated as a 
body of revolution. The mesh used to model the speci-
men is shown in Fig. 2. The boundary conditions were 
defined as the roller boundary along the axis of 
symmetry, while the bottom boundary condition can 
also be defined as a roller boundary. The model was 
comprised of 19200 CAX3 mesh near the contact region 
and 4400 CAX4R mesh further away from the contact 
region to ensure numerical accuracy. At the maximum 
load, the minimum number of contact elements in the 
contact zone was no less than 25 in each FEM com- 
 
 

 
 

Fig. 2. The finite element mesh. 
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putation. The mesh was well tested for convergence and 
was determined to be insensitive to far-field boundary 
conditions. In all finite element computations, the 
indenter was modelled as a rigid body; the value of the 
friction coefficient between metallic surfaces and 
diamond is in the range of 0.10 to 0.15 as reported by 
Tabor [28]. A common constant value of 0.15 for 
friction between the diamond indenter and metallic 
materials was used throughout this study; and large 
deformation FEM computation was performed. The 
equi-biaxial compressive or tensile stress was added to 
the model by prescribing an initial stress in the finite 
element model. All simulations were performed in two 
different load–unload indentation cycles, the indentation 
depth was 30 µm and 50 µm, respectively. 

The indented material was modelled as a homo-
geneous elastic–plastic von Misses solid with isotropic 
hardening. True stress and true strain are related via the 
following equation: 

 

y

y y y

, .

( ) , .n n

E E

E E

σ ε ε σ

σ σ σ ε ε σ

= ≥

= ≥
              (13) 

 

To cover a wide variety of elastic–plastic materials, 
Young’s modulus E = 10, 50, 90, 130, 170, 210 GPa 
and yield strength y 200,σ =  300, 500, 700, 1000, 
1800, 2100, 3000 MPa were used. The values of yE σ  
were varied over the range y100 1000,E σ≤ ≤  which 
covers most metals. Poisson’s ratio is not an important 
factor in the indentation experiment [26], and for most 
engineering materials 0.3.ν ≈  The strain-hardening 
exponent was varied from 0 to 0.5; for most metals n  is 
between 0.1 and 0.5.  

The load–depth curve of the indentation was obtained 
by recording the reaction forces on the indenter and the 
corresponding applied displacements. The focus of this 
study was the indentation load–depth behaviour; there-

fore analysis of load–depth curves was used in indenta-
tion techniques to provide a measurement of the work. 
So the proper parameters were set in solution controls of 
ABAQUS to ensure the steps of loading and unloading 
were greater than 20. 

In this study, both loaded and unloaded indentations 
were studied to establish how the response of spherical 
indentation was influenced by the residual stress and 
material properties. Residual indentation depth rh  and 
maximum load mF  were obtained from the load–depth 
curves for each given t .h  The total work tW  and 
reversible work uW  were obtained by integrating the 
loading and unloading curves, respectively. 

The dimensionless function can be numerically 
derived from extensive finite element simulations. The 
surfaces denoted by the functions 1Π  and 2Π  are 
shown in Fig. 3 and Fig. 4. They illustrate the variations 
of u tW W  and r tW W  with respect to *

y ,E σ  r y ,σ σ  
and n  for different indentation depths. It can be seen 
from Fig. 3a and Fig. 4a that u tW W  increases with ,n  
but u tW W  decreases with increasing *

yE σ  (or 
r y ).σ σ  It is easy to understand that when *

yE σ  (or 
r y )σ σ  increases or n  decreases, the material is softer, 

so the elastic recovery of the material is smaller. As the 
indentation depth increases, the work done by loading 
increases faster than the work done by unloading. So 

u tW W  decreases with increasing indentation depth. 
From Fig. 3b and Fig. 4b we can see that the effects on 

r tW W  of compressive stress are often not as large as 
tensile stress, especially in the case of smaller *

y .E σ  
When *

yE σ  is smaller, the effects on r tW W  of n  are 
larger in the case of tensile stress. Figures 3b and 4b are 
similar because the change in the amount of rW  and tW  
is approximate in the case of 30 µm and 50 µm. 

If we obtain the function relationship of u tW W  or 
r t ,W W  and *

y ,E σ  r y ,σ σ  ,n  respectively, then 
*

y ,E σ  r y ,σ σ   and n   can  be  determined.  It  can  be  
 
 

               (a)      (b) 
 

 
 

Fig. 3. Variation of (a) Wu /Wt and (b) Wr /Wt based on the indentation depth of 30 µm. 
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               (a)      (b) 
 

 
 

Fig. 4. Variation of (a) Wu /Wt and (b) Wr /Wt based on the indentation depth of 50 µm. 
 
 

seen from Fig. 3 and Fig. 4 that the relationship between 
u tW W  or r tW W  and *

y ,E σ  r y ,σ σ  and n  is a  non-
linear function. Due to the complexity of the functions, 
it is difficult to get an analytic function to describe their 
relationship; a trial and error procedure is normally 
necessary. Moreover, the accuracy of such an approach 
is highly dependent on the precision of the surface 
fitting procedure as well as the robustness of the reverse 
analysis algorithm. 

 
 

4. ARTIFICIAL  NEURAL  NETWORKS 
 

The flowchart in Fig. 5 outlines the process of determin-
ing the residual stress and material properties by using  
 
 

 
 

Fig. 5. Flowchart for ANN. 

ANNs. Finite element simulations are used to obtain the 
relationship between the dimensionless functions and 
the residual stress and material parameters. To fully 
train/test the ANNs, the dimensionless functions are net-
works’ inputs and the residual stress and material para-
meters are networks’ output. The inputs to ANN iP  are 

 

u( 003) t( 003)

r( 003) t( 003)
i

u( 005) t( 005)

r( 005) t( 005)

,

h h

h h

h h

h h

W W
W W

P
W W
W W

 
 
 =  
  
 

                     (14) 

 

where the subscripts 003h  and 005h  represent the 
indentation depths of 30 µm and 50 µm, respectively. 

The outputs from the network iT  are 
 
*

y

i r y .
E

T
n

σ
σ σ
 
 

=  
 
 

                          (15) 

 

Back-propagation multilayer feed-forward ANN is 
created by using the Neural Network Toolbox in 
Matlab [29]. It comprises the input layer, the hidden 
layer, and the output layer. The number of neurons in 
the input and output layers of the ANN is identical to 
the number of input and output parameters, respectively. 
However, the number of neurons in the hidden layers of 
the neural network is calibrated during the training and 
validation process. The tangent sigmoid transfer func-
tion is used in the ANN.  

The surfaces described by functions 1Π  and 2Π  as 
shown in Fig. 3 and Fig. 4 are used to serve as the train-
ing and validating data sets for ANN models. Training 
is the process of repeated applications of the back-pro-
pagation algorithm until the error becomes acceptable or 
some other criterion is achieved. Since the difference 
between the training data is larger, this will result in a 
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larger ANN prediction error. Thus, it is necessary to 
normalize the experiment data before applying them to 
the network. The normalizing equation is 

 

min
k

max min

,
x x

x
x x

−
=

−
                        (16) 

 

where x  is the real value of the variable before 
normalization, minx  and maxx  are the minimum and 
maximum values of the variable .x  They are 
normalized to the values k .x  

The training algorithm of gradient descent with 
momentum is used in our study to train the ANNs. The 
data for training and validation of ANN were obtained 
numerically through 280 finite element simulations. Out 
of the 280 sets of input and output data, 240 sets were 
randomly assigned as training data while the remaining 
40 sets were used for validation purposes. The mean 
square error (MSE) of the network outputs and the 
target values are used as the network performance 
indicator. During training, the learning rule is used to 
iteratively adjust the weights and biases of the network 
in order to move the network outputs closer to the target 
values by minimizing the network performance 
indicator. In an effort to more properly reflect inter-
mediate values of indentation, the numbers of neurons 
in three hidden layers are 200, 100 and 10. 

 
 

5. RESULTS  AND  DISCUSSION 
 

After the ANNs are successfully trained and tested, the 
ANN model maps the functional relationship between 
the dimensionless function and the mechanical para-
meters. In order to examine the accuracy of the ANN  
 

approach, several numerical experiments of indentation 
were performed. The results of testing conducted on 35 
experimental data sets are presented in Fig. 6. It should 
be noted that these sets of finite element results were not 
used in the training and validation process described in 
Section 4. 

It can be observed from Fig. 6 that the proposed 
ANN model predicted the residual stress and material 
properties reasonably accurately. The maximum error is 
less than 9% between the original input data and reverse 
analysis for all examined r y ,σ σ  less than 13% for ,n  
and less than 4% for *

y .E σ  
There are potentially many sources of errors in 

physical experiments, which result in calculation errors 
of the residual stress and material properties. Therefore, 
we will investigate the sensitivity of this method for 
errors in the measured parameters such as uW  and r .W  

First, uW  of the indentation depth of 30 µm is given 
2% error, while the other parameters are unchanged. 
The proposed ANN model is conducted to obtain the 
residual stress and material properties. The results are 
summarized in Fig. 7a. The maximum error is larger 
than 30% for r y ,σ σ  25% for ,n  and 46% for *

y .E σ  
Similarly analysis of rW  is examined. Comparing the 
input data with those identified from ANN in Fig. 7b, 
we can find that most reverse analysis results are fairly 
accurate of strain-hardening exponent and r y .σ σ  
However, the error of *

yE σ  is larger. This means that 
*

yE σ  obtained from ANN algorithm are more 
sensitive to the measured parameters errors compared to 

r yσ σ  and .n  Comparing Fig. 7a and Fig. 7b, we can 
find that the sensitivity for the error of uW  is larger than 
the error of r .W  This is because the relevance of rW  and 

rσ  is enhanced, so the error of rW  has reduced the 
impact on *

yE σ  and .n  

 
 

 

 
 

Fig. 6. Identification of E*/σ y, σ  r /σ  y, and n for ANN. 
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  (a) 

 
 
 

  (b) 

 
 

Fig. 7. Sensitivity of E*/σ y, σ  r /σ  y, and n for ANN: (a) Wu, (b) Wr. 
 
 

6. CONCLUSIONS 
 

An energy-based method and dimensional analysis of 
indentation parameters were applied to construct an 
artificial neural network model in order to extract the 
residual stress and material properties based on 
spherical indentation. The relationships between the 
work of residual stress, the residual stress, and material 
properties were numerically calibrated through training 
and validation of the ANN model. They enable the 
direct mapping of the characteristics of the indentation 
parameters to the residual stress and the elastic–plastic 
material properties. The proposed ANN can quickly and 

effectively predict the residual stress and material 
properties based on the load–depth curve of spherical 
indentation. It was found that *

yE σ  obtained from the 
ANN algorithm was more sensitive to the errors of the 
measured parameters compared to r yσ σ  and .n  
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Energia-baasil-meetodiga jääkpingete ja materjalide omaduste määramine  
tehisneurovõrke kasutades  

 
Hongping Jin, Wenyu Yang ja Lin Yan  

 
On kasutatud energia- ja mõõtmelise analüüsi meetodite abil konstrueeritud tehisneurovõrkude mudeleid jääkpingete 
ning materjalide elastsete ja plastsete omaduste määramiseks sfäärilise indentori sissepressimise teel. Materjalides 
tekkivate jääkpingete ja materjalide omaduste ennustamine on indenteerimiskõverate abil teljestikus jõud-indentee-
rimissügavus kiirelt ning lihtsalt teostatav. Pakutud tehisneurovõrkude mudeli kalibreerimise protseduur võimaldab 
erinevate materjalide omaduste, nagu ühtlane võrdkaheteljeline jääkpinge, elastsusmoodul, voolepiir ja kalestumis-
tegur, otse kaardistamist. Eelmainitud tehisneurovõrkude mudel on võrdlemisi täpne ja usaldusväärne. 

 


