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Abstract. We show that injectives with respect to a specific class of order embeddings in the category of posemigroups with
submultiplicative morphisms are quantales and construct injective hulls for a certain class of posemigroups with respect to this
specific class of order embeddings.
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1. INTRODUCTION

Bruns and Lakser in their paper [2] characterized injective hulls in the category of semilattices. In a recent
article [6], Lambek et al. considered injective hulls in the category of pomonoids and submultiplicative
identity and order-preserving mappings.

Inspired by these results, we construct injective hulls in the category of posemigroups and sub-
multiplicative order-preserving mappings with respect to certain class E≤ of morphisms in this work. In
fact, Theorem 5.8 of [6] becomes a consequence of our main theorem (Theorem 7).

As usual, a posemigroup (S, ·,≤) is a semigroup (S, ·) equipped with a partial ordering ≤ which
is compatible with the semigroup multiplication, that is, a1a2 ≤ b1b2 whenever a1 ≤ b1 and a2 ≤ b2,
for any a1,a2,b1,b2 ∈ S. Posemigroup homomorphisms are monotone (i.e. order-preserving) semigroup
homomorphisms between two posemigroups. A subsemigroup R of S equipped with the partial order
(R×R) ∩ ≤ is called a subposemigroup of S. An order embedding from a poset (A,≤A) to a poset (B,≤B)
is a mapping h : A → B such that a ≤A a′ iff h(a) ≤B h(a′), for all a,a′ ∈ A. Every order embedding is
necessarily an injective mapping.

Let C be a category and let M be a class of morphisms in C . We recall that an object S from C is
M -injective in C provided that for any morphism h : A→ B in M and any morphism f : A→ S in C there
exists a morphism g : B→ S such that gh = f .

A morphism η : A → B in M is called M -essential (cf. [1]) if every morphism ψ : B → C in C , for
which the composite ψη is in M , is itself in M . An object H ∈C is called an M -injective hull of an object
S if H is M -injective and there exists an M -essential morphism S→ H.

It is natural to consider injectivity in the category of posemigroups with respect to posemigroup
homomorphisms that are order embeddings. However, injective objects in this sense are only one-element
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posemigroups. Indeed, if a posemigroup (S, ·,≤) is injective, then the underlying semigroup (S, ·) is injective
in the category of all semigroups, because every semigroup can be considered as a discretely ordered
posemigroup, and homomorphisms of discretely ordered posemigroups are just the homomorphisms of
underlying semigroups. But injective semigroups are only the trivial ones (see [10]).

Allowing more morphisms between posemigroups, it is still possible to obtain nontrivial injectives. This
approach is taken in [6]. Namely, one can consider order-preserving submultiplicative mappings f : A→ B
between posemigroups A and B, i.e. mappings with f (a) f (a′) ≤ f (aa′) for all a,a′ ∈ A. We denote by
PoSgr≤ the category where objects are posemigroups and morphisms are submultiplicative order-preserving
mappings.

A quantale (cf. [8]) is a posemigroup (S, ·,≤) such that
(1) the poset (S,≤) is a complete lattice;
(2) s(

∨
M) =

∨{sm | m ∈M} and (
∨

M)s =
∨{ms | m ∈M} for each subset M of S and each s ∈ S.

We note that compatibility of multiplication and order actually follows from condition (2). Indeed, if
s,a,b ∈ S and a≤ b, then sb = s(

∨{a,b}) =
∨{sa,sb}, and so sa≤ sb. Similarly as≤ bs.

2. INJECTIVE POSEMIGROUPS

Let E≤ denote the class of all morphisms h : A → B in the category PoSgr≤ which are order-preserving,
submultiplicative, and satisfy the following condition: h(a1) . . .h(an) ≤ h(a) implies a1 . . .an ≤ a for all
a1, . . . ,an,a ∈ A. Each such morphism is necessarily an order-embedding. In this section we show that
E≤-injective objects in the category PoSgr≤ are precisely the quantales. This is largely a restatement of
arguments from [6] for posemigroups.

Proposition 1. Quantales are E≤-injective objects in the category PoSgr≤.

Proof. Let S be a quantale, h : A → B be a morphism in E≤, and let f : A → S be a morphism in PoSgr≤.
Define a mapping g : B→ S by

g(b) =
∨
{ f (a1) . . . f (an) | h(a1) . . .h(an)≤ b, a1, . . . ,an ∈ A},

for any b ∈ B. Then g is clearly an order-preserving mapping. The fact that g is submultiplicative and
satisfies gh = f follows from the proof of [6] Theorem 4.1. ¤

Proposition 2. In the category PoSgr≤, every retract of a quantale is a quantale.

Proof. Let (E,◦,≤E) be a quantale and let (S, ·,≤S) be a retract of E. Then there exist submultiplicative
order-preserving mappings i : S→ E and g : E → S such that gi = idS, where idS is the identity mapping on
S. It is obvious that (S,≤S) is complete.

Let s ∈ S and M ⊆ S. Obviously, s(
∨

M) is an upper bound of the set {sm | m ∈M}. Suppose that u is
an upper bound of {sm | m ∈M} in S. Then

u = g(i(u))

≥ g

(
∨

E

{i(sm) | m ∈M}
)

≥ g

(
∨

E

{i(s)◦ i(m) | m ∈M}
)

= g

(
i(s)◦

∨

E

{i(m) | m ∈M}
)
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≥ g(i(s))g

(
∨

E

{i(m) | m ∈M}
)

= sg

(
∨

E

{i(m) | m ∈M}
)

≥ s

(
∨

S

M

)
.

So s(
∨

M) is the least upper bound of {sm | m ∈M}, that is,

s
(∨

M
)

=
∨
{sm | m ∈M}.

Similarly one can prove the equality
(∨

M
)

s =
∨
{ms | m ∈M}. ¤

A subset A of a poset (S,≤) is said to be a down-set if s ∈ A whenever s ≤ a for s ∈ S, a ∈ A. For any
I ⊆ S, we denote by I↓ the down-set {x ∈ S | x≤ i for some i ∈ I} and by a↓ the down-set {s ∈ S | s≤ a} for
a ∈ S.

Now one can construct an E≤-injective posemigroup starting from any posemigroup.
Let (S, ·,≤) be a posemigroup, and let P(S) be the set of all down-sets of S. Define a multiplication ·

on P(S) by
I · J = (IJ)↓= {x ∈ S | x≤ i j for some i ∈ I, j ∈ J}. (1)

As in [6], (P(S), ·,⊆) is a quantale. Hence, by Proposition 1 we have the following result.

Proposition 3. Let (S, ·,≤) be a posemigroup. Then (P(S), ·,⊆) is E≤-injective in the category PoSgr≤.

Theorem 4. Let (S, ·,≤) be a posemigroup. Then S is E≤-injective in PoSgr≤ if and only if S is a quantale.

Proof. Sufficiency follows by Proposition 1.
Necessity. The mapping η : (S, ·,≤) → (P(S), ·,⊆), given by η(a) = a↓ for each a ∈ S, is clearly

an order-embedding of the poset (S,≤) into the poset (P(S),⊆). It is routine to check that η preserves
multiplication and hence η is also submultiplicative. Being a multiplicative order-embedding, η belongs to
E≤.

Since S is E≤-injective by assumption, there exists g : P(S)→ S such that gη = idS, so S is a retract of
P(S). Consequently, (S, ·,≤) is a quantale by Proposition 2. ¤

3. ON INJECTIVE HULLS OF POSEMIGROUPS

In this section we show that, for a certain class of posemigroups, E≤-injective hulls exist. This class will
include all pomonoids, but not only those. Similarly to Proposition 2.1 in [6] it can be shown that E≤-
injective hulls are unique up to isomorphism.

For any down-set I of a posemigroup S we define its closure by

cl(I) := {x ∈ S | aIc⊆ b↓ implies axc≤ b for all a,b,c ∈ S}.
Let I be a down-set and s ≤ x ∈ cl(I). Suppose that aIc ⊆ b↓. Since x ∈ cl(I), axc ≤ b. But then also

asc ≤ axc ≤ b, which means that s ∈ cl(I). Thus cl(I) is a down-set and we may consider the mapping
cl : P(S)→P(S).

Recall (see [8], Definition 3.1.1) that a quantic nucleus on a quantale Q is a submultiplicative closure
operator on Q.
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Lemma 5. The mapping cl is a quantic nucleus on the quantale P(S).

Proof. First, let us show that cl is a closure operator.
If aIc⊆ b↓, then clearly axc≤ b for every x ∈ I. Hence I ⊆ cl(I) and cl is extensive.
Let I ⊆ J, x ∈ cl(I), and aJc ⊆ b↓. Then we have aIc ⊆ aJc ⊆ b↓ and hence axc ≤ b. So x ∈ cl(J) and

we have proven that cl is order-preserving.
The inclusion cl(I)⊆ cl(cl(I)) holds because cl is extensive and order-preserving. Conversely, suppose

that aIc⊆ b↓ and y ∈ cl(cl(I)). Then axc≤ b for any x ∈ cl(I). This means acl(I)c⊆ b↓. So ayc≤ b by the
definition of cl, and y ∈ cl(I). Thus cl is also idempotent, and therefore a closure operator.

It remains to prove that cl is a submultiplicative mapping. To this end, let us first prove that cl(I) · J ⊆
cl(I ·J) for all I,J ∈P(S). Take z∈ cl(I) ·J and suppose that a(I ·J)c⊆ b↓. Then for any j ∈ J the inclusion
I j ⊆ I · J implies that aI( jc)⊆ b↓. We have z≤ m j for some m ∈ cl(I) and j ∈ J. So am( jc)≤ b. It follows
that azc≤ am jc≤ b, which results in z ∈ cl(I · J), as needed.

Similarly, I · cl(J)⊆ cl(I · J) holds. Consequently, we obtain that

cl(I) · cl(J)⊆ cl(I · cl(J))⊆ cl(cl(I · J)) = cl(I · J). ¤

One can immediately get the following corollary.

Corollary 6. For a posemigroup S and I,J ∈P(S), we have

cl(cl(I) · cl(J)) = cl(I · J).

We put
Q(S) := {I ∈P(S) | I = cl(I)}

and define a multiplication ◦ on Q(S) by

I ◦ J := cl(I · J). (2)

By Theorem 3.1.1 of [8] we immediately have that, for every posemigroup S, (Q(S),◦,⊆) is a quantale
which is the image of the quantic nucleus cl. From Theorem 4 we conclude that Q(S) is E≤-injective in the
category PoSgr≤.

Now we can prove our main result.

Theorem 7. (cf. Theorem 5.8 in [6]). Let S be a posemigroup such that cl(s↓) = s↓ for every s ∈ S. Then
Q(S) is an E≤-injective hull of S in PoSgr≤.

Proof. Since cl(s↓) = s↓, we can consider the mapping η : S →Q(S),a 7→ a↓. We shall prove that η is an
E≤-essential morphism in PoSgr≤.

Let us show that η is a posemigroup homomorphism. Take a,b ∈ S. It is easy to see (see also the proof
of Proposition 3.3 in [6]) that (ab)↓= ((a↓)(b↓))↓. Hence, using (2) and (1), we have

η(a)◦η(b) = cl(a↓ ·b↓) = cl(((a↓)(b↓))↓) = cl((ab)↓) = (ab)↓= η(ab),

i.e. η is a semigroup homomorphism. For every a,b ∈ S, a≤ b if and only if a↓ ⊆ b↓. This means that η is
both monotone and an order-embedding. If now η(a1)◦ . . .◦η(an)⊆ η(a), then η(a1 . . .an)⊆ η(a), which
implies a1 . . .an ≤ a. Thus η belongs to E≤.

Finally, let ψ : Q(S)→ B be a morphism in PoSgr≤ such that ψη ∈ E≤. We have to show that ψ ∈ E≤.
Suppose that ψ(I1) . . .ψ(In)≤ ψ(J) in B, where I1, . . . , In,J ∈Q(S). First we prove that

(∀a,b,c ∈ S)(aJc⊆ b↓=⇒ a(I1 ◦ . . .◦ In)c⊆ b↓). (3)
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Suppose that aJc⊆ b↓, a,b,c ∈ S. Then also a↓ · J · c↓ ⊆ b↓. Let us show that

a(I1 . . . In)c⊆ b↓. (4)

Take i1 ∈ I1, . . . , in ∈ In. Then

(ψη)(a)(ψη)(i1) . . .(ψη)(in)(ψη)(c) = ψ(a↓)ψ(i1↓) . . .ψ(in↓)ψ(c↓)
≤ ψ(a↓)ψ(I1) . . .ψ(In)ψ(c↓)
≤ ψ(a↓)ψ(J)ψ(c↓)
≤ ψ(a↓◦ J ◦ c↓)
= ψ(cl(a↓ · J · c↓))
≤ ψ(cl(b↓))
= ψ(b↓)
= (ψη)(b).

Since ψη ∈ E≤, we conclude that ai1 . . . inc≤ b. Consequently, a(I1 . . . In)c⊆ b↓.
Now (4) implies a((I1 . . . In)↓)c ⊆ b↓. If x ∈ cl((I1 . . . In)↓) = cl(I1 . . . In) = I1 ◦ . . . ◦ In, then

a((I1 . . . In)↓)c⊆ b↓ implies axc≤ b by the definition of closure. Thus we have proven (3).
To prove that I1 ◦ . . . ◦ In ⊆ J, let x ∈ I1 ◦ . . . ◦ In. Suppose that a,b,c ∈ S and aJc ⊆ b↓. By (3),

a(I1 ◦ . . .◦ In)c⊆ b↓. Since x ∈ I1 ◦ . . .◦ In = cl(I1 ◦ . . .◦ In), we have axc≤ b. Hence x ∈ cl(J) = J. ¤
It turns out that the assumptions of Theorem 7 are satisfied for several natural classes of posemigroups.
A posemigroup S is negatively ordered (cf. [9]) if st ≤ s and st ≤ t for all s, t ∈ S. Negatively ordered

semigroups and monoids arise naturally in various semigroup theoretic contexts; see, for example, [3,4,11].

Example 8.
(1) Every lower semilattice with respect to its natural order is negatively ordered.
(2) If S is any semigroup, then the set Id(S) of all its ideals is a negatively ordered posemigroup with respect

to inclusion and the product IJ = {i j | i ∈ I, j ∈ J}.
(3) The real interval [0,1] is negatively ordered with respect to the usual multiplication and order of real

numbers.
(4) In [7], negatively ordered semigroups with respect to natural partial order in many classes of semigroups

are determined.

A semigroup S has weak local units (see, e.g., [5]) if for every s ∈ S there exist u,v ∈ S such that
s = su = vs.

Corollary 9. The posemigroup Q(S) is an E≤-injective hull of S in PoSgr≤ in any of the following four
cases:
(1) S is a pomonoid;
(2) S is a negatively ordered posemigroup with weak local units;
(3) S is a linearly ordered cancellative posemigroup;
(4) S is an upper semilattice with natural order.

Proof. We shall show that the assumption of Theorem 7 is fulfilled in all these cases. Since s↓ ⊆ cl(s↓) holds
always, we have to prove that cl(s↓)⊆ s↓ for every s ∈ S.
(1) Suppose that x ∈ cl(s↓). Since 1(s↓)1⊆ s↓, we have that x = 1x1≤ s, that is, x ∈ s↓.
(2) Take x ∈ cl(s↓). By assumption there exist u,v ∈ S such that x = ux = xv. Since S is negatively ordered,

we have usv ≤ s. This implies u(s↓)v ⊆ s↓, and hence, by the definition of cl(s↓), x = uxv ≤ s. Thus,
cl(s↓)⊆ s↓, as needed.



X. Zhang and V. Laan: Injective hulls for posemigroups 377

(3) To prove that cl(s↓)⊆ s↓ for every s ∈ S, we show that x 6∈ s↓ implies x 6∈ cl(s↓) for every x ∈ S. So let
x 6∈ s↓, i.e. s < x. Suppose that x ∈ cl(s↓). Choose arbitrary a,c ∈ S, and put b := asc. Then a(s↓)c⊆ b↓,
and hence axc ≤ b, because x ∈ cl(s↓). Consequently, b = asc ≤ axc ≤ b, which gives asc = axc.
Cancelling a and c, we obtain s = x, contradicting inequality s < x. Thus x 6∈ cl(s↓).

(4) Let (S,∨,≤) be an upper semilattice with its natural order. Assume x ∈ cl(s↓). Since s∨ (s↓)∨ s⊆ s↓, it
follows that s∨x∨ s≤ s. Hence x ∈ s↓. ¤

Example 10. Both additive and multiplicative posemigroups of natural numbers are linearly ordered and
cancellative. Note that neither of them is a pomonoid or negatively ordered.

There exist semigroups S for which Q(S) is not an E≤-injective hull of S in PoSgr≤.

Example 11. Let S = {a,b,c} be a left zero semigroup with the ordering a≤ c, b≤ c. Then

P(S) = {a↓,b↓,c↓, /0,{a,b}},

where a↓= {a} and cl(a↓) = S 6= a↓. In fact, cl(a↓) = cl(b↓) = cl(c↓) = cl({a,b}) = S. The reason is that
for any u,v,w ∈ S and nonempty I ∈P(S), if uIv = {u} ⊆ w↓, then uxv = u≤ w for any x ∈ S. Therefore,
Q(S) = {S, /0} and there is no E≤-essential morphism from S to Q(S), because such a morphism would
have to be an order-embedding and hence injective. Consequently, Q(S) is not an E≤-injective hull of S in
PoSgr≤.

As the last thing we show that Theorem 5.8 of [6] follows from Theorem 7.
Let PoMon1

≤ be the category where objects are pomonoids and morphisms are submultiplicative order-
preserving mappings which preserve identity (this is the category considered in [6]). Thus PoMon1

≤ is a
subcategory of PoSgr≤. By E 1

≤ we denote the class of those morphisms which belong to PoMon1
≤ and E≤.

Corollary 12. Let S be a pomonoid. Then Q(S) is an E 1
≤-injective hull of S in the category PoMon1

≤.

Proof. From the proof of Corollary 9 we know that cl(s↓) = s↓ for every s ∈ S. Observe that Q(S) is a
pomonoid with the identity element 1↓. Let us show that Q(S) is E 1

≤-injective in the category PoMon1
≤.

Consider a morphism h : A → B in E 1
≤ and any morphism f : A → Q(S) in PoMon1

≤. Since Q(S) is
E≤-injective in PoSgr≤, there exists g : B→Q(S) in PoSgr≤ such that gh = f . Then 1↓= f (1) = (gh)(1) =
g(1) and g is a morphism in PoMon1

≤. A similar argument shows that η : S→Q(S),s 7→ s↓ is an E 1
≤-essential

morphism in PoMon1
≤. ¤

As the authors of [6] mention, in the category of pomonoids it would be natural to require 1 ≤ f (1)
instead of 1 = f (1) from a morphism f . It is an open problem if in such a category injective hulls can be
constructed in a similar way.
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Järjestatud poolrühmade injektiivsed katted

Xia Zhang ja Valdis Laan

On tõestatud, et injektiivsed objektid teatud sisestuste klassi suhtes kategoorias, mille objektideks on järjes-
tatud poolrühmad ja morfismideks submultiplikatiivsed kujutused, on kvantaalid. Samuti on näidatud,
kuidas teatud poolrühmade klassi jaoks saab konstrueerida injektiivseid katteid vaadeldava sisestuste klassi
suhtes.


