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Abstract. A factorable matrix is a natural generalization of a Riesz matrix. When considering the properties of factorable matrices,
many authors have used methods similar to the methods for Riesz matrices. So, a property having a long proof for Riesz matrices
generated a long proof for a factorable matrix. In this paper for any factorable matrix we introduced its associated Riesz matrix.
With its help many properties of a factorable matrix can be easily and briefly deduced from the corresponding properties of the
associated Riesz matrix.
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1. INTRODUCTION

One of the most thoroughly studied matrix methods in summability is a Riesz method. This is a summability
method associated with a Riesz matrix which is defined as follows. Let p = (pn) be a real sequence with

p1 > 0, pk ≥ 0 (k ∈ N) and Pn :=
n

∑
k=1

pk (n ∈ N).

The Riesz matrix Rp = (rnk) (associated with p) is a lower triangular matrix with rnk := pk
Pn

if k ≤ n. The
Riesz matrix Rp is conservative and either regular (equivalent to Pn →∞) or coercive. In view of their simple
structure, handling the properties of Riesz methods is relatively easy compared to other classes of matrix
methods.

A natural generalization of a Riesz matrix is a factorable matrix. A factorable matrix is a lower triangular
matrix with nonnegative entries bkcn, 0 ≤ k ≤ n. In this paper we concentrate on conservative factorable
matrices with b1 > 0 and cn > 0 (n ∈ N).

When considering the properties of factorable matrices, many authors have used methods similar to the
methods for Riesz matrices (see for example [1,7,9,10]), which often generated quite lengthy proofs. In this
paper for each factorable matrix A = (bkcn) we use the associated Riesz matrix Rb. We will see that many
properties of a factorable matrix can be easily and briefly deduced from the properties of the associated
Riesz matrix.

In Section 2 we consider the relation of summability domains of a factorable matrix and its associated
Riesz matrix. We observe that coregularity of a factorable matrix and regularity of its associated Riesz
matrix are connected to each other. We also correlate coercivity of these matrices. Using these relations,
we easily find a characterization of those conservative matrices which are stronger than a given factorable
matrix.
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As further applications of our methods in Section 3 we prove a limitation theorem and two Tauberian
theorems for factorable matrices.

In Section 4 we apply our methods to describe summation of 0–1 sequences by factorable matrices.
More precisely, we give a characterization of those conservative factorable matrices for which the bounded
summability domain has the Hahn property.

2. SUMMABILITY DOMAINS OF FACTORABLE MATRICES

From the Silverman–Toeplitz conditions we can easily deduce that a factorable matrix A = (bkcn) is
conservative if and only if there exist the finite limits

γ := lim
n

cn and t := lim
n

cnBn, (2.1)

where Bn = ∑n
k=1 bk (n ∈N), and a factorable matrix is regular if and only if γ = 0 and t = 1. A conservative

factorable matrix A = (bkcn) is regular for null sequences if and only if γ = 0.
A conservative matrix D = (dnk) is called coregular if

χ(D) := lim
n ∑

k
dnk−∑

k
lim

n
dnk 6= 0

and conull if χ(D) = 0. A conservative factorable matrix A = (bkcn) is coregular if and only if (cf. [9], p. 95)

γ = lim
n

cn = 0 and t = lim
n

cnBn 6= 0. (2.2)

A matrix D = (dnk) is called coercive if `∞ ⊂ cD. From the Schur Theorem (cf. Theorem 2.4.1 in [3])
we get that a conservative factorable matrix A = (bkcn) is coercive if and only if limn(cn− γ)Bn = 0.

Lemma 2.1. Let A = (bkcn) be a conservative factorable matrix. Then A is either coregular or coercive.

Proof. Suppose limn cnBn = 0. Then

cn = cnBn · 1
Bn
≤ cnBn · 1

B1
→ 0.

Hence A is coercive.
If limn cnBn 6= 0 and limn cn = 0, then A is coregular. If limn cnBn 6= 0 and limn cn 6= 0, then limn Bn =:

B < ∞. So limn(cn− γ)Bn = 0 ·B = 0. Hence A is coercive.

It turns out that summability domains of a factorable matrix A and the associated Riesz matrix Rb
coincide in many cases.

Proposition 2.2. Let A = (bkcn) be a conservative factorable matrix.
(i) Then cRb ⊂ cA and limA x = t limRb x (x ∈ cRb).
(ii) If bk = 0 for k > k0 and some k0 ∈ N, then cA = cRb = ω, the space of all sequences.
(iii) If {k ∈ N : bk 6= 0} is infinite, then the inclusion cA ⊂ cRb holds if and only if limn cnBn 6= 0.

Proof.
(i) Let x ∈ cRb , then in view of

[Ax]n = cn

n

∑
k=1

bkxk = cnBn · 1
Bn

n

∑
k=1

bkxk = cnBn · [Rbx]n (2.3)

and the conservativity of A we get x ∈ cA. Moreover, by (2.3) we get limA x = t limRb x.
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(ii) The statement cRb = ω = cA is evident because both matrices A and Rb are conservative matrices with
entries unequal to zero in finitely many columns at the most.

(iii) If limn cnBn 6= 0, then the inclusion cA ⊂ cRb follows from (2.3). Now suppose that limn cnBn = 0 and
let (ni) be the index sequence such that bni 6= 0 (i ∈ N) and bn = 0 otherwise. For i ∈ N let

ki := min{ni ≤ ν < ni+1 : cν = max{ck : ni ≤ k < ni+1}}.

We define inductively (xn) ∈ cA\cRp by the setting x1 := 1 and

xn :=





1
bn

(√
Bki
cki
−∑n−1

k=1 bkxk

)
if n = ni for some i ∈ N,

0 if n 6∈ {ni| i ∈ N}.
For any i ∈ N we get

[Ax]ni = cni

(√
Bki

cki

−
ni−1

∑
k=1

bkxk +
ni−1

∑
k=1

bkxk

)
=

cni

cki

√
Bkicki ≤

√
Bkicki → 0.

Now let n be an integer with ni < n < ni+1 for some i ∈ N. Then

[Ax]n = cn

ni

∑
k=1

bkxk =
cn

cni

[Ax]ni =
cn

cni

cni

cki

√
Bkicki =

cn

cki

√
Bkicki ≤

√
Bkicki .

So [Ax]k → 0 as k → ∞. On the other hand, by (2.3) we have

[Rpx]ki =
1

Bkicki

· cki

cki

√
Bkicki =

1√
Bkicki

→ ∞.

Hence x 6∈ cRp .

The following result demonstrates that coregularity of A and regularity of Rb are also related to each
other.

Proposition 2.3. Let A = (bkcn) be a conservative factorable matrix.
(i) If A is coregular, then Rb is regular.
(ii) If Rb is regular, then A is regular for null sequences.

Proof.
(i) This statement follows from (2.2) and the relation

Bn = cnBn · 1
cn

(n ∈ N).

(ii) Since Bn → ∞ and A is conservative, it follows

lim
n

cn = lim
n

1
Bn
·lim

n
cnBn = 0.

Remark 2.4.
(i) Conservativity (even regularity) of Rb does not imply that a factorable matrix A is conservative: take

any nonnegative sequences (bn) and (cn) with limn Bn = ∞ and (cn) 6∈ c.
(ii) If Rb is regular, then a conservative factorable matrix A can be both either conull or coregular. Take

bk = 1 (k ∈ N), then Rb is the Cesàro method C1 which is regular. Moreover, if we set cn := 1
n (n ∈ N),

then A is coregular, and it is conull if we put cn := 1
n2 (n ∈ N).
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Let us also consider the relation of coercivity of a factorable matrix A and its associated Riesz matrix Rb.

Proposition 2.5. Let A = (bkcn) be a conservative factorable matrix.
(i) If Rb is coercive, then A is coercive.
(ii) If A is coercive and γ = limn cn 6= 0, then Rb is coercive.

Proof.
(i) Since Rb is coercive, there exists B = limn Bn < ∞. Hence

lim
n

(cn− γ)Bn = 0 ·B = 0.

(ii) If A is coercive and limn cn 6= 0, then limn cnBn 6= 0, so

lim
n

Bn = lim
n

cnBn · lim
n

1
cn

< ∞.

Therefore Rb is coercive.

Remark 2.6. If A is a coercive factorable matrix with γ = 0, then Rb can be both either coercive or regular.
Take cn := 1

n2 (n∈N). If b = (bk)∈ `1, then both A and Rb are coercive; if bk = 1 (k ∈N), then A is coercive
while Rb is regular.

In the next result we characterize those conservative matrices which are stronger than a given factorable
matrix.

Theorem 2.7. Let A = (bkcn) be a positive coregular factorable matrix and D = (dnk) be a conservative
matrix method. Then D is stronger than A if and only if the following conditions hold:
(i)

(
dnk
bk

)
k
∈ c0 (n ∈ N);

(ii) supn ∑k Bk

∣∣∣dnk
bk
− dn,k+1

bk+1

∣∣∣ < ∞.

Proof. Since A is coregular, Proposition 2.3 (i) implies that Rb is regular, moreover, in view Proposition 2.2
we have cA = cRb . Now the statement of the theorem follows from the corresponding result for Riesz
matrices (cf. Theorem 3.2.8 in [3]).

Corollary 2.8. Let A = (bkcn) be a positive coregular factorable matrix. Then the method A is
equiconvergent if and only if

(
Bn
bn

)
∈ `∞.

Proof. This is an immediate consequence of the arguments in the proof of Theorem 2.7 and Corollary 3.2.10
in [3].

Remark 2.9.
(i) Since

(
Bn
bn

)
∈ `∞ is equivalent to the condition liminfn

bn+1
Bn

> 0, Corollary 2.8 is just Theorem 1 of
Rhoades [9] with a much shorter proof.

(ii) In contrast to Riesz matrices (cf. Corollary 3.2.10 in [3]), we cannot omit the coregularity assumption in
Corollary 2.8: taking (bn) and (cn) such that

(
Bn
bn

)
∈ `∞ and cnBn → 0, we have `∞ ⊂ cA.

3. LIMITATION THEOREM AND TAUBERIAN THEOREMS FOR FACTORABLE
MATRICES

The following proposition is a limitation theorem for factorable matrices generalizing the corresponding
result of Hardy ([6], Theorem 13) for Riesz methods.
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Proposition 3.1. Let A = (bkcn) be a positive coregular factorable matrix. If x ∈ cA and limA x = s, then

xn− s
t

= o
(

1
bncn

)
.

Proof. Let x ∈ cA, then by Proposition 2.2 (iii) x ∈ cRb . Moreover, by Proposition 2.3 (i) Rb is regular and
limRb x = t−1 limA x = t−1s. Hence, by Theorem 13 of [6] it follows that (xn− t−1s)bn/Bn → 0. Therefore

(
xn− s

t

)
bncn =

(
xn− s

t

)
bn

Bn
cnBn → 0.

Corollary 3.2. Let A = (bkcn) be a positive regular factorable matrix. If x ∈ cA and limA x = s, then

xn− s = o
(

1
bncn

)
.

In the following result, again based on properties of Riesz matrices, we generalize Theorem 2 of
Rhoades [9] from regular to coregular factorable matrices.

Corollary 3.3. Let A = (bkcn) be a positive coregular factorable matrix. If

lim
n

cn

cn−1
= 1, (3.1)

then x ∈ cA implies that xn = o( 1
bncn

).

Proof. Since

lim
n

Bn−1

Bn
= lim

n

Bn−1cn−1

Bncn
· cn

cn−1
=

t
t
·1 = 1, (3.2)

we obtain
lim

n
bncn = lim

n
cnBn

Bn−Bn−1

Bn
= t(1−1) = 0.

So, by Proposition 3.1

bncnxn =
(

xn− s
t

)
bncn +

s
t
bncn → 0.

As a further application of our methods we prove two Tauberian theorems for factorable matrices.

Theorem 3.4. (O-Tauberian theorem for a factorable matrix). Let A = (bkcn) be a coregular factorable
matrix. Then each A-summable sequence (xn) which satisfies the Tauberian condition xn+1− xn = O(bncn)
is convergent.

Proof. Let (xn) be an A-summable sequence which satisfies the Tauberian condition xn+1−xn = O(bncn) and
let M > 0 be such that |xn+1−xn| ≤Mbncn (n∈N). By Proposition 2.2 (iii) x∈ cRb and by Proposition 2.3 (i)
Rb is regular. Since A is conservative, Bncn ≤C (n ∈ N) for some C > 0. Hence

|xn+1− xn| ≤Mbncn = McnBn
bn

Bn
≤MC

bn

Bn
.

So xn+1−xn = O( bn
Bn

). Now, by the O-Tauberian theorem for Riesz matrices (cf. Theorem 4.2.5 in [3]), (xn)
is convergent.
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Theorem 3.5. (one-sided oscillation Tauberian theorem for a factorable matrix). Let A = (bkcn) be a
positive coregular factorable matrix such that

liminf
n→∞

cn+1

cn
> 0.

Then each A-summable sequence (xn) which satisfies the Tauberian condition

liminf
cr
cn
→1,r≥n→∞

(xr− xn)≥ 0 (3.3)

is convergent.

Proof. First note that

liminf
n→∞

Bn

Bn+1
= liminf

n→∞

cn+1

cn
> 0

(cf. (3.2)). Moreover, if r ≥ n→ ∞ such that Br
Bn
→ 1, then

cr

cn
=

Brcr

Bncn
· Bn

Br
→ 1.

Therefore

liminf
Br
Bn
→1,r≥n→∞

(xr− xn)≥ 0

for a given A-summable sequence (xn) which satisfies the Tauberian condition (3.3). Hence, by the one-sided
oscillation Tauberian theorem for Riesz matrices (cf. Theorem 4.2.11 in [3]), (xn) is convergent.

4. SUMMABILITY OF SEQUENCES OF 0’S AND 1’S BY FACTORABLE MATRICES

Using the methods developed in the previous section, we will also study summation of 0–1 sequences by
factorable matrices.

We start with some preliminaries. For other notations and preliminary results we refer the reader
to [2–4].

Let χ denote the set of all sequences of 0’s and 1’s and let χ(E) denote the linear hull of χ ∩E.
An FK-space is a sequence space endowed with a complete, metrizable, locally convex topology under

which all coordinate mappings x = (x j)→ xk (k ∈ N) are continuous.
A sequence space E is said to have the Hahn property, the separable Hahn property, and the matrix

Hahn property, if χ(E) ⊂ F implies E ⊂ F whenever F is any FK-space, a separable FK-space, and a
matrix domain cB, respectively. Obviously, the Hahn property implies the separable Hahn property, and the
latter implies the matrix Hahn property.

In case of Riesz matrices Rp, Hahn properties of their bounded summability domain `∞ ∩ cRp are very
well studied: if p ∈ `1, then `∞∩ cRp has the Hahn property since Rp is coersive; if p 6∈ `1, then `∞∩ cRp has
the Hahn property if and only if ( pn

Pn
) ∈ c0 (cf. Corollary 3.9 in [5]). Keeping this characterization in mind,

we describe Hahn properties of bounded summability domain for a factorable matrix.

Theorem 4.1. Let A = (bkcn) be a coregular factorable matrix. Then the following conditions are
equivalent:
a) bncn → 0;
b) A has spreading rows, that is, limn cn sup1≤k≤n bk = 0;
c) A ∈ KG (that is, each matrix D with χ(`∞∩ cA)⊂ cD is conservative);
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d) `∞∩ cA has the matrix Hahn property;
e) `∞∩ cA has the separable Hahn property;
f) `∞∩ cA has the Hahn property;
g) χ(cA∩ `∞)β = `1.

Proof. Since A is coregular, `∞∩ cA = `∞∩ cRb and Rb is regular. Hence the equivalences
a’)⇔ b’) ⇔ c)⇔ d)⇔ e)⇔ f),

where a’) bn/Bn → 0, b’) Rb has spreading rows, follow from Corollary 3.9 in [5]. The implication c) ⇔ g)
follows from Corollary 2.4 in [11]. Since

bncn = cnBn
bn

Bn
, cn sup

1≤k≤n
bk = cnBn sup

1≤k≤n

bk

Bn
,

and limn cnBn 6= 0, the equivalence of all conditions in the theorem follow.

Note that the application of the correspondence of factorable matrices and their associated Riesz matrix
allowed us to avoid long proofs related to Hahn properties theorems.

Remark 4.2. The equivalence of conditions a)⇔ d) was first shown in [7], however, the methods analogical
to the methods used by Kuttner and Parameswaran for Riesz matrices [8] were applied. So the proof
appeared to be quite long.

5. CONCLUSION

We introduced for a factorable matrix a notion of its associated Riesz matrix. Properties of these two
matrices are closely related: using well-known properties of Riesz matrices, we can easily and briefly prove
the corresponding properties of related factorable matrices. As a demonstration of our methods we found a
characterization of those conservative matrices which are stronger than a given factorable matrix; we proved
a limitation theorem and two Tauberian theorems for factorable matrices. We also applied our methods to
characterize conservative factorable matrices for which their bounded summability domains have the Hahn
property.
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Faktoriseeruvad maatriksid ja nendega seotud Rieszi maatriksid

Maria Zeltser

Käesolevas töös on antud faktoriseeruva maatriksi jaoks kasutusele võetud duaalse Rieszi maatriksi mõiste.
Nende kahe maatriksi omadused on tihedalt seotud: kasutades Rieszi maatriksite hästi tuntud omadusi,
saame lihtsalt ja lühidalt tõestada seotud faktoriseeruvate maatriksite vastavad omadused. Meie meetodite
näitamiseks on iseloomustatud konservatiivseid maatrikseid, mis on antud faktoriseeruvast maatriksist
tugevamad, ja tõestatud limiteeriv teoreem ning kaks Tauberi teoreemi faktoriseeruvate maatriksite jaoks.
Samuti on rakendatud meie meetodit, et iseloomustada konservatiivseid faktoriseeruvaid maatrikseid, mille
korral on nende tõkestatud summeeruvusväljad Hahni omadusega.


