
Proceedings of the Estonian Academy of Sciences,
2014, 63, 4, 387–397

doi: 10.3176/proc.2014.4.04
Available online at www.eap.ee/proceedings

Linearization by input–output injections on homogeneous time scales

Monika Ciulkina, Vadim Kaparinb∗, Ülle Kottab, and Ewa Pawłuszewicza
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Abstract. The problem of linearization by input–output (i/o) injections is addressed for nonlinear single-input single-output
systems, defined on a homogeneous time scale. The paper provides conditions for the existence of a state transformation, bringing
state equations into the observer form, which is linear up to some nonlinear input- and output-dependent functions, called i/o
injections. These conditions are based on differential one-forms, associated with the i/o equation of the system.
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1. INTRODUCTION

From a modelling point of view, dynamical systems on time scales incorporate both continuous- and
discrete-time systems as special cases, allowing us to unify the study and consider the classical results as
special cases from the new theory. On the other hand, the study of dynamical systems on time scales helps
to reveal and explain discrepancies, occasionally appearing between the results obtained for continuous-
time systems and their discrete-time counterparts (see, e.g., [1,12,13,18,20,21]). However, it is important to
note that the discrete-time model in the time scale formalism is given in terms of the difference operator,
and not in terms of the more conventional shift operator. The difference-based models, often referred to
as delta-domain models, are not completely new for the description of discrete-time systems. They have
been promoted during the last decades as the models closely linked to continuous-time systems, being less
sensitive to round-off errors at higher sampling rates (e.g., [14,25]). More information on nonlinear control
systems on time scales is available in [2–4,6,10,22].

The method of linearization of the nonlinear control systems by input–output (i/o) injections
(alternatively, transformation of the state equations into the observer form) is the intermediate step in the
observer construction. Design of the nonlinear observer for the system in the observer form (linear up to
i/o injections) is relatively easy [11,15], allowing one to construct the nonlinear observer in such a way
that the dynamics of the estimation error are linear, making it simple to guarantee that the error converges
asymptotically to zero.

The purpose of this paper is to present necessary and sufficient conditions for the existence of the state
transformation, allowing transformation of the single-input single-output (SISO) state equations, defined
on a homogeneous time scale, into the observer form. The conditions are formulated within the algebraic
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framework, based on differential one-forms, and can be considered as the extension of the result from [11]
to the case of a homogeneous time scale. The computation of one-forms is based on the i/o equation of the
system and the conditions can be easily verified, whenever the i/o equation is found.

The paper is organized as follows. In Section 2 we give a brief exposition of the basic notions from the
time scale calculus and an overview of the algebraic framework of differential forms on a homogeneous time
scale. The problem of linearization by i/o injections is formulated in Section 3. Section 4 presents first a
direct formula for computation of the differential one-forms, in terms of which the main result is formulated,
and then provides necessary and sufficient conditions. The theory is illustrated by an example. Conclusions
are drawn in Section 5.

2. PRELIMINARIES

2.1. Time scale calculus

In this subsection we recall only those facts that we need in this paper. For a general introduction to the time
scale calculus see [9].

A time scale T is an arbitrary nonempty closed subset of the real numbers. This paper is focused on
the two most important for control theory instances of time scale, i.e. the continuous-time case, T= R and
the discrete-time case T = τZ := {τk : k ∈ Z} for τ > 0. The examples of the other type of time scales,
including the non-uniformly sampled time, can be found, for instance, in [6]. The most important notions of
time scale calculus are the forward jump operator σ , the backward jump operator ρ , the delta derivative ∆,
and the graininess function µ . Applications of σ , ρ , and ∆ to the function ξ :T→R, as well as the values of
µ , are presented in Table 1 for two special cases T= R and T= τZ. A time scale T is called homogeneous
if µ ≡ const and, as can be seen from Table 1, both time scales T= R and T= τZ possess this property.

Hereinafter, we leave out the time argument t in order to simplify the exposition, so ξ := ξ (t). We
denote by ξ 〈i〉 the delta derivative of an arbitrary order i. Moreover, for notational convenience, denote
ξ 〈i...n〉 :=

(
ξ 〈i〉, . . . ,ξ 〈n〉

)
, for 0≤ i≤ n and ξ 〈0〉 := ξ .

2.2. Algebraic framework

Consider the nonlinear SISO control system, defined on a homogeneous time scale T, and described either
by the state equations

x∆ = f (x,u),
y = h(x),

(1)

or by the higher-order i/o delta-differential equation

y〈n〉 = φ
(

y,y〈1〉, . . . ,y〈n−1〉,u,u〈1〉, . . . ,u〈n−1〉
)

, (2)

where x : T→X⊆Rn is an n-dimensional state vector, u : T→U⊆R is an input, and y : T→Y⊆R is an
output. Moreover, f :X×U→X, h :X→Y and φ :Yn×Un →R are assumed to be real analytic functions.

Table 1. Basic types of operators/functions

T ξ σ (t) ξ ρ (t) ξ ∆(t) µ

R ξ (t) ξ (t) dξ (t)
dt 0

τZ ξ (t + τ) ξ (t− τ) ξ (t+τ)−ξ (t)
τ τ
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The following assumption is specification of Theorem 3.1 from [23], where the multi-input multi-output
case was considered.

Assumption 1. System (2) is submersive, i.e. the function φ in (2) satisfies the condition

rank

(
1+

n−1

∑
k=0

(−1)n−k−1µn−k ∂φ
∂y〈k〉

n−1

∑
j=0

(−1)n− jµn− j+1 ∂φ
∂u〈k〉

)
= 1. (3)

In this subsection we recall some facts from [5–7] focusing on equation (2). Let K ∗ denote the
field of meromorphic functions in a finite number of independent system variables from the infinite set
C ∗ =

{
y,y〈1〉, . . . ,y〈n−1〉;u〈k〉,k ≥ 0;υρ l

, l ≥ 1
}

, where ρ l denotes the l-fold application of the backward
jump operator ρ and the variable υ can be chosen either to be y or u. The choice can be briefly described as
follows. If the first element of the matrix in (3) is not identically equal to zero, then one can choose υ = u.
In this case, using the i/o equation (2), the variables yρ l

, l ≥ 1 can be expressed through the independent
variables from C ∗. If the second element of the matrix in (3) is not identically equal to zero, then one can
set υ = y and consider the variables uρ l

, l ≥ 1 as dependent. If both elements of the matrix in (3) are not
identically equal to zero, then one has freedom of choice. For F

(
y〈0...n−1〉,u〈0...k〉) ∈K ∗ the forward-shift

operator σφ : K ∗→K ∗ is defined by

Fσφ
(

y〈0...n−1〉,u〈0...k+1〉
)

:= F
((

y〈0...n−1〉
)σφ

,
(

u〈0...k〉
)σφ )

,

where
(
y〈0...n−1〉)σφ =

(
y+ µy〈1〉, . . . ,y〈n−2〉+ µy〈n−1〉,y〈n−1〉+ µφ(·)),

(
u〈0...k〉)σφ = u〈0...k〉+µu〈1...k+1〉 and

φ(·) is determined by (2). Hereinafter, we denote the n-fold application of the forward-shift operator

by Fσn
φ :=

(
Fσn−1

φ
)σφ

. The backward-shift operator ρφ : K ∗ → K ∗ is defined as the inverse of σφ , i.e.

ρφ := σ−1
φ . Thus, denoting by ρn

φ the n-fold application of the backward-shift operator, we have F = (Fρφ )σφ

and Fρn
φ =

(
Fρn+1

φ
)σφ

. The delta derivative operator ∆φ : K ∗→K ∗ is defined by

F∆φ
(

y〈0...n−1〉,u〈0...k+1〉
)

:=





1
µ

(Fσφ (·)−F(·)) if µ 6= 0,

n−1

∑
l=0

∂F(·)
∂y〈l〉

y〈l+1〉+ ∑
k≥0

∂F(·)
∂u〈k〉

u〈k+1〉 if µ = 0,

where, according to (2), y〈n〉 should be replaced by φ , whenever it appears. Observe that for µ 6= 0 the nth
delta derivative can be computed by the formula

F〈n〉 =
1

µn

n

∑
k=0

(−1)kCk
nFσn−k

φ , (4)

where Ck
n is a binomial coefficient, i.e. Ck

n = n!/((n− k)!k!).

Proposition 2. [5] For F,G ∈ K ∗ the delta derivative and forward-shift operators satisfy the following
properties:
(i) Fσφ = F + µF∆φ ,

(ii) (αF +βG)∆φ = αF∆φ +βG∆φ , for α,β ∈ R,
(iii) (FG)∆φ = Fσφ G∆φ +F∆φ G,

(iv) on a homogeneous time scale operators ∆φ and σφ commute, i.e. (Fσφ )∆φ =
(
F∆φ

)σφ .
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Generalization of (i) in Proposition 2 yields the n-fold application of operator σφ as

Fσn
φ =

n

∑
s=0

Cs
nµsF〈s〉. (5)

Consider the infinite set of symbols dC =
{

dy,dy〈1〉, . . . ,dy〈n−1〉,du〈k〉,k ≥ 0
}

and define E =
spanK ∗ dC . The elements of E are called the differential one-forms. Any element of E has the form

ω =
n−1

∑
l=0

Aldy〈l〉+ ∑
k≥0

Bkdu〈k〉,

where Al,Bk ∈K ∗ and only a finite number of coefficients Bk are nonzero.
For F

(
y〈0...n−1〉,u〈0...k〉) ∈K ∗ define the operator d : K ∗→ E by

dF :=
n−1

∑
l=0

∂F
∂y〈l〉

dy〈l〉+ ∑
k≥0

∂F
∂u〈k〉

du〈k〉.

Starting from the space E it is possible to build up the structures used in exterior differential calculus. We
refer to [7] for details, whereas here we just recall some basic notions. Define the set ∧dC = {dζ ∧ dη :
dζ ,dη ∈ dC }, where ∧ denotes the wedge product with the standard properties dζ ∧ dη = −dη ∧ dζ
and dζ ∧ dζ = 0 for dζ ,dη ∈ dC . Introduce the space E 2 = spanK ∗ ∧ dC of two-forms. The operator
d : E → E 2, called exterior derivative operator, is defined for ω = ∑k

`=1 a`(ζ1, . . . ,ζk)dζ` ∈ E , where
ζ1, . . . ,ζk ∈ C ∗, by the rule dω := ∑`,`′ ∂a`/∂ζ`′ dζ` ∧ dζ`′ . The notion of two-form is generalized to the
p-form and wedge product is defined for arbitrary p-forms.

One says that ω ∈ E is an exact one-form if ω = dF for some F ∈K ∗. A one-form ω for which dω = 0
is said to be closed. It is well known that an exact one-form is closed, whereas a closed one-form is only
locally exact.

3. PROBLEM STATEMENT

Our purpose is to find the conditions under which there exists a (local) state transformation, i.e.
diffeomorphism ψ : X→ X, defined by

z = ψ(x) (6)

such that in the new state coordinates the state equations (1) are in the observer form

z∆
1 = z2 +ϕ1(y,u),

...

z∆
n−1 = zn +ϕn−1(y,u),

z∆
n = ϕn(y,u),
y = z1,

(7)

which is linear up to nonlinear functions ϕ1(y,u), . . . ,ϕn(y,u), called i/o injections.

State elimination
System (1) is called generically (single-experiment) observable if the rank of the observability matrix is
generically equal to n [19], i.e. if

rankK ∗

[
∂

(
h,h〈1〉, . . . ,h〈n−1〉)

∂x

]
= n. (8)
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Given a SISO observable nonlinear control system (1), defined on a homogeneous time scale, the problem
is to find the higher-order i/o delta-differential equation (2), corresponding to (1). In general, the
representation (2) is valid only locally. Compute,

y = h(x),

y∆ = h∆φ (x,u),
...

y〈n−1〉 = h〈n−1〉
(

x,u,u〈1〉, . . . ,u〈n−2〉
)

.

(9)

The set of equations (9) can be solved, under the observability assumption (8), with respect to the state
variables

x = ζ
(

y,y〈1〉, . . . ,y〈n−1〉,u,u〈1〉, . . . ,u〈n−2〉
)

. (10)

Next, compute y〈n〉 and substitute x from (10) to get

y〈n〉 = h〈n〉
(

ζ
(

y,y〈1〉 . . . ,y〈n−1〉,u,u〈1〉, . . . ,u〈n−2〉
)

,u,u〈1〉, . . . ,u〈n−1〉
)

.

Note that the state equations (1) can be transformed into the observer form (7) with the state
transformation (6), if the i/o equation (2), corresponding to (1), can be rewritten in the form

y〈n〉 = (ϕ1(y,u))〈n−1〉+ · · ·+(ϕn−1(y,u))〈1〉+ϕn(y,u) (11)

for some functions ϕ1(y,u), . . . ,ϕn(y,u). The converse holds too, since (11) is always realizable into the
extended observer form (7).

Indeed, if (2) has the form (11), one can define the new state variables as

z1 = y,

z2 = y〈1〉−ϕ1,

z3 = y〈2〉−ϕ〈1〉1 −ϕ2,

...

zn = y〈n−1〉−ϕ〈n−2〉
1 −·· ·−ϕ〈1〉n−2−ϕn−1,

(12)

yielding the state equations in the observer form (7). Note that, using the state equations (1), one can
substitute the variables y,y〈1〉, . . . ,y〈n−1〉 in such a way that the right-hand side of equation (12) depends only
on x, meaning that (12) is the state transformation (6).

4. NECESSARY AND SUFFICIENT CONDITIONS

For i = 1, . . . ,n define the differential one-forms

ωi =
i−1

∑
j=0

(−1) jC j
n−i+ j



((

∂φ
∂y〈n−i+ j〉

)ρn−i+ j
φ

)〈 j〉

dy +

((
∂φ

∂u〈n−i+ j〉

)ρn−i+ j
φ

)〈 j〉

du


 . (13)

The proof of Theorem 4 below is based on the following Proposition, which extends the results of [17] to
the case of a homogeneous time scale, and the proof of which is given in Appendix.
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Proposition 3. Let Φ(ξ1(t),ξ2(t), . . . ,ξr(t)) be a composite function for which delta derivatives up to order
a + b, where a and b are nonnegative integers, are defined. Then on a homogeneous time scale T for
l = 1,2, . . . ,r the following holds:

∂
[
(Φ(ξ1(t),ξ2(t), . . . ,ξr(t)))〈a+b〉]

∂ξ 〈a〉l (t)
= Cb

a+b

((
∂Φ(ξ1(t),ξ2(t), . . . ,ξr(t))

∂ξl(t)

)〈b〉)σa
φ

. (14)

Theorem 4. The observable system of the form (1) can be transformed by the state transformation (6) into
the observer form (7) if and only if for i = 1, . . . ,n

dωi = 0, (15)

where the one-forms ωi are defined by (13).

Proof. Necessity: Assume that system (1) is transformable into the observer form (7). Consequently, the i/o
equation (2), corresponding to the state equations (1), can be rewritten in the form (11), yielding

φ =
n

∑
k=1

ϕ〈n−k〉
k . (16)

For the compactness of the proof denote

ωiy :=
i−1

∑
j=0

(−1) jC j
n−i+ j

((
∂φ

∂y〈n−i+ j〉

)ρn−i+ j
φ

)〈 j〉

,

ωiu :=
i−1

∑
j=0

(−1) jC j
n−i+ j

((
∂φ

∂u〈n−i+ j〉

)ρn−i+ j
φ

)〈 j〉

,

such that (13) may be rewritten as
ωi = ωiydy+ωiudu. (17)

First, consider ωiy . Using (16), one obtains

ωiy =
i−1

∑
j=0

n

∑
k=1

(−1) jC j
n−i+ j




(
∂ϕ〈n−k〉

k

∂y〈n−i+ j〉

)ρn−i+ j
φ



〈 j〉

.

Observe, that if k > i− j, then n− k < n− i+ j and so ∂ϕ〈n−k〉
k /∂y〈n−i+ j〉 = 0. Therefore, instead of taking

k = 1, . . . ,n, we can take k = 1, . . . , i− j. Moreover, by Proposition 3 for r = 2, a = n− i+ j, and b = i− j−k,
we have

∂ϕ〈n−k〉
k

∂y〈n−i+ j〉 = Ci− j−k
n−k

((
∂ϕk

∂y

)〈i− j−k〉)σn−i+ j
φ

.

Thus, one can write

ωiy =
i−1

∑
j=0

i− j

∑
k=1

(−1) jC j
n−i+ jC

i− j−k
n−k

(
∂ϕk

∂y

)〈i−k〉
.
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Changing the summation order ∑i−1
j=0 ∑i− j

k=1 a j,k = ∑i
k=1 ∑i−k+1

j=1 a j−1,k and taking into account

C j−1
n−i+ j−1Ci− j−k+1

n−k = Ci−k
n−kC

j−1
i−k , one obtains

ωiy =
i

∑
k=1

Ci−k
n−k

(
∂ϕk

∂y

)〈i−k〉 i−k+1

∑
j=1

(−1) j−1C j−1
i−k .

Note that for i = 1 the above formula yields ω1y = ∂ϕ1/∂y. In the case i ≥ 2, one can separate the last
addend of the sum ωiy , leading to

ωiy =
∂ϕi

∂y
+

i−1

∑
k=1

Ci−k
n−k

(
∂ϕk

∂y

)〈i−k〉 i−k+1

∑
j=1

(−1) j−1C j−1
i−k .

In [16] Lemma 1 says that for k = 1, . . . , i−1 and i≥ 2

i−k+1

∑
j=1

(−1) j−1C j−1
i−k = 0. (18)

Then by (18), ωiy = ∂ϕi/∂y. In the same manner we get ωiu = ∂ϕi/∂u, for i = 1, . . . ,n. Finally, from (17)
we obtain

ωi = dϕi, (19)

yielding (15).
Sufficiency: Assume that the conditions (15) are satisfied. Then locally there exist functions ϕi(y,u),

satisfying (19). Integrating the one-forms ωi, the corresponding functions ϕi can be found, such that (16)
holds and, as a consequence, the state equations in the observer form (7) can be constructed.

Example 5. Consider the system

x∆
1 =

(
u+

1
u

)
(x2 + x3)+ x1 +u− x3,

x∆
2 = u2− x1 +(2+ x3 +u)x3 +(u+ x2 +2x3)x2,

x∆
3 = x1 +ux2 +(u−1)x3,

y = x2 + x3.

(20)

The i/o equation, corresponding to (20), is

y〈3〉 = µ2y〈2〉
(

2u〈2〉+ y〈2〉
)

+4µy〈2〉
(
u∆ + y∆)

+2y〈2〉(u+ y)

+ µy∆
(

u∆ +4u〈2〉
)

+2y∆ (
y∆ +2u∆)

+ y
(

1
u

+u∆ +2u〈2〉
)

+u〈2〉
(

2u+4µu∆ + µ2u〈2〉
)

+2(u∆)2 +u(y∆ +1).

Compute, according to (13),
ω1 = 2(u+ y)dy+2(u+ y)du,

ω2 = udy+ ydu,

ω3 =
1
u

dy+
(

1− y
u2

)
du,
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which leads to
dω1 = 2dy∧dy+2du∧dy−2du∧dy+2du∧du = 0,

dω2 = du∧dy−du∧dy = 0,

dω3 =−(1/u2)du∧dy+(1/u2)du∧dy+(2/u3)du∧du = 0,

meaning that the conditions of Theorem 4 are satisfied. Since in this case (19) holds whenever u 6= 0,
integration of one-forms ωi leads to

ϕ1(y,u) = (y+u)2,

ϕ2(y,u) = yu,

ϕ3(y,u) =
y
u

+u.

Using (12), one obtains the state transformation as

z1 = x2 + x3,

z2 = x3,

z3 = x1− x3,

yielding the state equations in the observer form

z∆
1 = z2 +(y+u)2,

z∆
2 = z3 + yu,

z∆
3 =

y
u

+u,

y = z1.

5. CONCLUSIONS

In the paper necessary and sufficient conditions for linearization of the nonlinear state equations, defined on
a homogeneous time scale, by input-output (i/o) injections are given. For this aim the state transformation
is used. The conditions are formulated in terms of differential one-forms, directly computable from the i/o
equation of the given system. The main theorem states that the problem is solvable if and only if the exterior
derivatives of these one-forms are equal to zero. Note that our conditions are simple and transparent but
require that first the i/o equation of the control system has to be found. This can be done using the extension
of the state elimination algorithm from [11] to the systems, defined on a homogeneous time scale, provided
the control system is observable. Similarly to the continuous-time case, the i/o equations can always be
found, at least locally. Nevertheless, it can sometimes be a difficult task, implying that the i/o equation
cannot always be represented in terms of the elementary functions.

In order to provide the proof of the main theorem, the supporting proposition was stated and proved.
The proposition is the extension of the theorem from [17] and it shows how the partial derivative of the total
delta derivative of the composite function with a vector argument can be expressed through the total delta
derivative of the partial derivative of the composite function. The proposition can also serve as a useful tool
for research in the area of studying systems on homogeneous time scales.

It should be mentioned that though the results obtained in this paper basically recover those for the
continuous-time case in [11], for the discrete-time systems, given in terms of the difference operator, the
results are completely new. Moreover, unlike [11], where the step-by-step algorithm (requiring integration
of one-forms) was employed, we suggested the direct formula for computation of the one-forms, necessary
for conditions. To conclude, the theoretical results were obtained in a constructive way such that they can
be implemented later in the software package NLControl (Mathematica-based package developed in the
Institute of Cybernetics) (see [8]).
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Regarding the future extension of the results of this paper, one may address the construction of the
observer. Moreover, using both the state and the output transformations, like in [16], one may relax the
conditions of Theorem 4. Note that, concerning this problem, in the discrete-time case simple necessary
and sufficient conditions exist that are directly computable from the i/o equation and do not depend on an
unknown single-variable output-dependent function [26], whereas in the continuous-time case derivation of
similar conditions seems to be a difficult task. We expect that the unified formalism of time scale calculus
will help to understand the reasons for this discrepancy and suggest a solution. Finally, one may employ the
tools of differential geometry, like in [24] and [27], to derive the alternative conditions, which do not rely on
the i/o equation of the system. These conditions would be preferable in the situations when the i/o equation
is difficult to find.
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APPENDIX

PROOF OF PROPOSITION 3

Proof. Note that in [17] the formula (14) was proved for the case T= R. Therefore, we consider here only
the case T = τZ, τ > 0. First, consider the left-hand side of equation (14). Using (4) for n = a + b, the
definition of the operator σφ and the chain rule for the partial derivative with respect to ξ 〈a〉l , one obtains

∂
[
(Φ(ξ1,ξ2, . . . ,ξr))〈a+b〉]

∂ξ 〈a〉l

=
1

µa+b

a+b

∑
k=0

(−1)kCk
a+b

∂Φ
(

ξ
σa+b−k

φ
1 ,ξ

σa+b−k
φ

2 , . . . ,ξ
σa+b−k

φ
r

)

∂ξ
σa+b−k

φ
l

· ∂ξ
σa+b−k

φ
l

∂ξ 〈a〉l

,

which, according to (5) for n = a+b− k, yields

∂
[
(Φ(ξ1,ξ2, . . . ,ξr))〈a+b〉]

∂ξ 〈a〉l

=
1

µa+b

a+b

∑
k=0

(−1)kCk
a+b

∂Φ
(

ξ
σa+b−k

φ
1 ,ξ

σa+b−k
φ

2 , . . . ,ξ
σa+b−k

φ
r

)

∂ξ
σa+b−k

φ
l

·
a+b−k

∑
s=0

Cs
a+b−kµs ∂ξ 〈s〉l

∂ξ 〈a〉l

.

Note that ∂ξ 〈s〉l /∂ξ 〈a〉l = 0 for every s, except for s = a when it equals 1. Furthermore, s = a occurs only
when a+b− k ≥ a, implying k ≤ b. Thus, one can write

∂
[
(Φ(ξ1,ξ2, . . . ,ξr))〈a+b〉]

∂ξ 〈a〉l

=
1

µb

b

∑
k=0

(−1)kCk
a+bCa

a+b−k

∂Φ
(

ξ
σa+b−k

φ
1 ,ξ

σa+b−k
φ

2 , . . . ,ξ
σa+b−k

φ
r

)

∂ξ
σa+b−k

φ
l

.
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Taking into account that by direct computations Ck
a+bCa

a+b−k = Cb
a+bCk

b and using the properties

∂F
(

ξ σ i
φ
)

∂ξ σ i
φ

=
(

∂F(ξ )
∂ξ

)σ i
φ

and Fσ i+ j
φ =

(
Fσ i

φ
)σ j

φ
,

one obtains

∂
[
(Φ(ξ1,ξ2, . . . ,ξr))〈a+b〉]

∂ξ 〈a〉l

= Cb
a+b

(
1

µb

b

∑
k=0

(−1)kCk
b

(
∂Φ(ξ1,ξ2, . . . ,ξr)

∂ξl

)σb−k
φ

)σa
φ

,

which, according to (4) for n = b, confirms (14). This completes the proof.
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23. Kotta, Ü., Rehák, B., and Wyrwas, M. On submersivity assumption for nonlinear control systems on homogeneous time scales.
Proc. Estonian Acad. Sci., 2011, 60(1), 25–37.

24. Krener, A. J. and Respondek, W. Nonlinear observers with linearizable error dynamics. SIAM J. Contr. Optim., 1985, 23(2),
197–216.

25. Middleton, R. H. and Goodwin, G. C. Digital Control and Estimation: A Unified Approach. Prentice Hall, Englewood Cliffs,
NJ, USA, 1990.
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Olekuvõrrandite lineariseerimine sisend-väljund-injektsioonide kaudu
homogeensel ajaskaalal

Monika Ciulkin, Vadim Kaparin, Ülle Kotta ja Ewa Pawłuszewicz

On uuritud homogeensel ajaskaalal defineeritud mittelineaarse juhtimissüsteemi olekuvõrrandite oleku-
taastaja kujule teisendamist. Alternatiivselt nimetatakse antud kujule teisendamist süsteemi lineariseerimi-
seks sisend-väljund-injektsioonide abil, sest sellisel kujul on süsteemi võrrandid lineaarsed kuni mõnede
mittelineaarsete, ainult sisenditest ja väljunditest sõltuvate liidetavateni; viimaseid nimetatakse sisend-
väljund-injektsioonideks. Olekutaastaja kujul esitatud süsteemi olekuid saab lihtsalt hinnata selliselt, et
hindamisviga läheneb asümptootiliselt nullile. Olekute hindamine on oluline olukorras, kus need pole
vahetult mõõdetavad või on mõõtmine liiga kallis. Analüüs ajaskaalal võimaldab ühildada pidevate
ja diskreetsete dünaamiliste süsteemide uurimise. On leitud tarvilikud ja piisavad tingimused süsteemi
võrrandite olekuteisendustega olekutaastaja kujule teisendamiseks. Tingimused on formuleeritud teatud
(otseselt süsteemi sisend-väljund-võrrandist leitavate) diferentsiaalsete üks-vormide eksaktsuse kaudu.
Kui tingimused on rahuldatud, siis üks-vormide integreerimisel leitakse funktsioonid (sisend-väljund-
injektsioonid), mille abil saab olekuvõrrandite olekutaastaja kuju lihtsalt konstrueerida.


