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Abstract. A mathematical model of an electrophoretic information display is considered. A system of differential equations 
describing the behaviour of an elementary cell of the twisting-ball display is introduced. A theoretical overview of the theories of 
ball shift and rotation is given. Results of numerical experiments of modelling the balls with different physical parameters are 
presented. The system of equations was solved using MATLAB solvers implementing Runge–Kutta methods with variable time 
step using step-wise integration. The display performance function describing the dependence between luminance and rotation in 
cases of different physical parameters is developed. 
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1. INTRODUCTION 

* 
A twisting-ball display (Sheridon, 1978; Sheridon and 
Richley, 1999) is a kind of electrophoretic information 
display invented at the Xerox Palo Alto Research Center 
(PARC), called Gyricon. This kind of display consists of 
a thin layer of transparent silicone plastic in which 
multiple bichromal balls are randomly dispersed 
(Fig. 1). 

Each ball is an electrical dipole and is placed in the 
cavity filled with dielectric fluid. The width of the cavity 
is 10–30% greater than the diameter of the balls. When 
the polarity of the control voltage is changed the orienta-
tion of the balls changes; one or the other of the hemi-
spheres with different charge and colour is exposed to 
the viewer. The displays based on such physical 
principles are highly bi-stable, robust, easy to manu-
facture, and have very low power consumption as they 
do not emit light because the image is formed using 
ambient light, similarly to conventional printed paper. 

The active elements (balls) of Xerox Gyricon dis-
plays are made of different waxes and are charged by a 
stochastic process that causes each particle to have a 
somewhat different charge (Crowley et al., 2002).  
                                                                 
* Corresponding author, jyriliiv@gmail.com 

Because of this the dipole charges of the balls are 
low and unequal and the required control voltages are 
very high (Sheridon, 2005). Moreover, the quality of the 
image is not sufficiently good. The authors of this work 
developed a method for manufacturing the particles of 
polyvinylidene difluoride (PVDF) (Liiv, 2013), which is 
an electret material with an extremely high residual  
 

 

 
 

Fig. 1. Schematic cross-section of twisting balls based e-paper 
display. 
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electric field. An electret material is a stable dielectric 
with a permanently embedded static electric charge, 
which, owing to the high resistance of the material, will 
not decay for hundreds of years. The balls are made by 
first melting or heating a suitable dielectric material and 
then allowing it to cool in a powerful electrostatic field. 
The polar molecules of the dielectric align themselves in 
the direction of the electrostatic field, producing a perma-
nent electrostatic bias. This allows a decrease of the 
control voltage and an improvement of the image quality. 

When the control voltage is constant or zero, the ball 
is “glued” to the wall of the cavity due to the electrostatic 
forces. When the polarity of the control voltage changes, 
the ball begins to move towards the opposite wall of the 
cavity. Microscopic asymmetries and the “rolling effect” 
cause a deviation of the axis of the electrical dipole from 
the direction of the electrical field. Then an electrostatic 
torque appears and causes the ball to rotate. 

This paper describes a simplified mathematical 
model of a composite display consisting of multiple ele-
ments and provides an opportunity to determine the per-
formance of the display (control voltage–luminance) 
depending on the physical parameters of the balls. 

 
 

2. THEORY  OF  THE  MOVEMENT  OF  THE  
BALLS 
 

When the polarity of the control voltage changes, the 
ball begins to move towards the opposite wall of the 
cavity and rotate. A schematic view of the situation is 
given in Fig. 2. 

Notations used: 
r  – radius of the ball; 
s  – thickness of the elastomer sheet; 
n  – coefficient of expansion of the elastomer sheet; 
 
 

 
 

Fig. 2. Schematic view of a bichromatic ball in a cavity. 

cr  – radius of the cavity; 
cU  – control voltage; 

ρ  – density of PVDF; 
q  – monopolar charge of the particle; 

Dq  – dipole charge; 
Dr  – radius of the dipole; 
ή  – viscosity of the fluid. 

For the radius of the cavity we have 
 

cr = α r⋅                                   (1) 
 

with some 1.α >  For the radius of the dipole we have 
 

D .
2
rr =                                    (2) 

 

The physical bounds for ball shift are 0 ( )y t≤ ≤  
c2( ).r r−  For the simulation, we apply the electric force 

in the form of a periodic rectangle function ( )U t  with 
period T  and amplitude c .U±  

The integral Lambertian luminance of this kind of 
display is very complicated. The authors are currently 
developing a model of integral luminance, which 
considers the stochastic placement of the particles and 
diffraction, refraction, and reflection of light on different 
surfaces inside the display. However, here we use a very 
simplified model as we need only a relative value of the 
luminance to describe the performance of the display 
(dependence luminance–position), not the absolute one. 

We presume that all the particles are placed in a 
regular way (see Fig. 3). We presume that the reflectance 
of the black side of a particle is 0 and of the white side is 
100%. 

For modelling the reflection, the plane of the display 
is divided into hexagons with cavities inside these as 
shown in Fig. 3. 

The area of the visible size of the particle is 
 

2
1 .S = π r⋅                                (3) 

 

The area of the corresponding hexagon is 
 

2
2 2 2c

2 co

3 2 2 .
sin60 3 3

r
S = = r = n r⋅              (4) 

 
 

 
 

Fig. 3. The plane of the display is divided into hexagons; r – 
radius of the ball, rc – radius of the cavity. 
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Fig. 4. Rate of the dark visible area of the ball. 
 
 
The black area of the ball exposed to the viewer is 
(Seidelmann, 2005) 
 

3 1
cos 1 .

2
+S = Sϕ                             (5) 

 

The relative luminance is 
 

22 3

2

31 (cos 1)
4

S S
L = = n

S
ϕ−

− ⋅ + .            (6) 

 

The illumination depends on the rotation angle of the 
multicolour balls inside the cavity. This dependence is 
depicted in Fig. 4, showing the rate of the dark area as a 
function of the rotation angle. 

 
 

3. SOURCE  DATA 
 

Most of the source data have a technological back-
ground. 

The median radius for achieving sufficient image 
quality (150 dpi) is 

 
625 10 [m].r −= ×  

 

A larger thickness of the elastomer sheet increases 
the contrast of the image. At the same time, increasing 
the thickness means using higher control voltages, 
which is inadvisable. The optimal thickness achieved 
experimentally is equal to 3 diameters of the ball: 

 
6

D 150 10 [m].R −= ×  
 

The coefficient of expansion of the elastomer sheet 
n  can be between 1.1 and 1.5. In our work we use 

 

1.2.n =  
 

The possible control voltage is different for different 
backplane units. Ideally (using standard solutions) 
 

c 15 [V].U =  
 

We observe the maximum possible control voltage for 
commercial backplanes: 
 

c 100 [V].U =  
 

The density of PVDF is given by (Solvay, n.d.) 
 

3 31.75 10 [kg/m ].ρ = ×  
 

In our experiments, the dipole charge can be 
controlled by changing the polarization parameters and 
the monopolar charge can be simply controlled using 
nonpolar surfactants dissolved in the carrier liquid 
(Karvar et al., 2011). The values can be measured 
directly 
 

18 16
D

18 16

1 10 [C] to 1 10 [C],
1 10 [C] to 1 10 [C].

q
q

− −

− −

= × ×
= × ×

 
 

Hexane is used as the carrier liquid. The viscosity of 
hexane (Sigma-Aldrich, n.d.) is 
 

4 23 10 [N s/m ].ή −= × ×  
 
 
4. MATHEMATICAL  MODELLING 
 

4.1. Translation  of  the  ball 
 

The ball inside the cavity accelerates at first and reaches 
a stable velocity determined by the diameter of the ball 
and the viscosity of the carrier liquid. Without loss of 
generality we can assume that the equilibrium state of a 
ball in the cavity is at the cavity wall. Each ball has a 
monopolar electrical charge and a bipolar charge. When 
the control voltage is constant or zero, the ball is “glued” 
to the wall due to the electrostatic forces. If the control 
voltage changes, the ball will begin to move towards the 
opposite wall of the cavity. We neglect the influence of 
gravity and buoyant force because of their smallness in 
comparison with the electrostatic force and viscous drag. 
The shift ( )y y t=  of the ball is described by the 
differential equation 
 

2
E L 0.2

F Fd y =
mdt
−

−                         (7) 
 

Here, EF  is an electrostatic force 
 

EF = E q⋅                                  (8) 
 

and LF  is a viscous drag. We presume that the velocity 
of the ball is relatively low and we can use Stokes’s law 
to determine the resistance of the fluid: 
 

L 6 .dyF = d ν= π η r
dt

⋅ ⋅ ⋅ ⋅ ⋅                    (9) 
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Fig. 5. Movement of the ball in a cavity; q = 6 × 10–16 [C]. 
 
 
The mass m  of the particle is 

 

34 .
3

m = ρ V = π ρ r⋅ ⋅ ⋅ ⋅                    (10) 
 

Although in real systems the magnitude of the electric 
field varies across the thickness of the material due to the 
difference of the permittivity of silicone, carrier liquid and 
ball material, we accept a simplification: 
 

.UE =
s

                                (11) 
 

The resulting differential equation is 
 

2

2 3

9 3 .
2 42

d y η dy U q+
dtdt ρ r π s ρ r

⋅ ⋅ ⋅⋅ −
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

         (12) 

 

The simulated trajectory of the ball governed by 
Eq. (8) is shown in Fig. 5. The initial conditions are 

(0) (0) 0.y y′= =  
 

4.2. Rotation  of  the  ball 
 
Every polarized bichromal ball is embedded into a cell 
filled with a dielectric fluid. The volume of the cell is 

2α  times larger than the volume of the ball. An illustra-
tion corresponding to a ball “sitting” inside a cell is 
shown in Fig. 6. 

The rotation of the ball inside the cell cavity as a 
result of the outer electrical field can be described 
through the balance relation 

 

S E 0,JM + M + M =                       (13) 
 

where JM  is the inertial torque: 
 

2

,J 2

dM = J
dt

−                            (14) 

 
 

Fig. 6. Schematic view of a bichromal ball in a cell. 
 
 
J  is the moment of inertia of the ball: 

 

2 52 8 ,
5 15

J = m r = π ρ r⋅ ⋅ ⋅                   (15) 

 

SM  is the viscous torque: 
 

4 3 4
S

82π (sin ) ,
3

d dM = η r α dα= π η r
dt dt

− ⋅ ⋅ ⋅ − ⋅ ⋅∫    (16) 

 

and EM  is the electrostatic torque: 
 

E D D2 sin .M = r q E φ⋅ ⋅ ⋅                    (17) 
 

The resulting differential equation describes the rotation 
of the ball: 

 
2

5 4 D sin8 8 0.
15 32

r q Ud dπ ρ r π η r + =
dt Sdt

ϕϕ ϕ ⋅ ⋅ ⋅
− ⋅ ⋅ − ⋅ ⋅   

(18) 
 

The initial conditions are (0) (0) 0.ϕ ϕ′= =  The 
magnitude of rotation depends on several parameters. 
Figure 7 shows a sample movement of a ball free of the 
cavity. 

If the ball is in the cavity, physical boundaries are 
applied. The changes of the angle and velocity of ball 
rotation corresponding to the situation above (Fig. 5) 
with different electrical parameters of the ball are shown 
in Figs 8, 9, and 10. In Fig. 8 we see that in the case of 
small dipole charge the ball performs some incomplete 
rotation cycles and stops in fixed angle. 

In Fig. 9 the ball has a nearly optimal dipole charge; 
other parameters remain unchanged. We see that in this 
case the ball rotation intends towards some complete 
rotation cycle. If control voltage changes, the ball will 
rotate nearly 180° and expose the right, black or white 
size to the observer. The display works as expected. 
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Fig. 7. Sample plot of ball rotation. 
 

 

 
 

Fig. 8. Rotation angle and velocity of the ball in a cavity 
(qD = 1 × 10–18 [C]). 

 
 

 
 

Fig. 9. Rotation angle and velocity of the ball in a cavity 
(qD = 2 × 10–18 [C]). 

 
 

Fig. 10. Rotation angle and velocity of the ball in a cavity 
(qD = 1 × 10–16 [C]). 

 
 
In Fig. 10 we see that when the dipole charge is too 

large, over some critical value, then the uniform rotation 
cycles of the ball are lost and the ball will perform 
random rotations and stop in unpredictable states. 

 
 

5. CONCLUSIONS 
 

During numerous laboratory experiments, we discovered 
an unstable behaviour of the experimental display for 
different dipole and monopole charges of balls. In some 
cases the display worked as expected, but in some cases 
we noticed that the particles acquired random states, not 
the white and black as presumed, and in other cases the 
display stopped working at all after some time. Note that 
in the case of an unpropitious combination of physical 
parameters the rotation of the ball is strictly limited and 
the final rotation angle is highly undetermined. These 
situations correspond to the simulations presented in 
Figs 8 and 10. 

We can conclude that the mathematical model pre-
sented in this paper corresponds to a proper operation of 
the display. In our experiments the dipole charge could 
be changed by changing the polarization parameters and 
the monopolar charge can be simply controlled using 
nonpolar surfactants dissolved in the carrier liquid. A 
proper operation of the display can be achieved only 
using the strictly predetermined combination of physical 
characteristics of the particles. 
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Twisting-ball’i  tüüpi  kuvari  matemaatiline modelleerimine 
 

Jüri Liiv, Aleksei Mashirin, Toomas Tenno ja Peep Miidla 
 

Polüvinülideendifluoriid (PVDF) sobib oma füüsikaliste omaduste poolest twisting-ball’i tüüpi displei (e-paber) 
valmistamiseks. Artiklis on matemaatiliselt modelleeritud sellest materjalist valmistatud aktiivelemendi (vedelikuga 
täidetud õõnsuses paiknev polariseeritud ja kahevärviline kerake) käitumine juhtpinge muutumisel. On koostatud 
osakese liikumist kirjeldavad diferentsiaalvõrrandid ja lahendatud need Runge-Kutta meetodil, kasutades programmi 
MATLAB. Tulemused näitavad, et displei korrektseks funktsioneerimiseks on vajalik osakeste füüsikaliste para-
meetrite kindel kombinatsioon. 

 
 
 

 
 


