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Abstract. The paper addresses the problem on sensor location regarding the solvability of the disturbance decoupling problem
by the dynamic measurement feedback (DDDPM). Both, the discrete- and continuous-time nonlinear systems are considered. An
exact formula is given to compute a controlled invariant vector function, necessary for the solvability of the DDDPM. Then, two
methods are given to find a measured output, which guarantee the solution to the DDDPM. The results are illustrated by several
examples.
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1. INTRODUCTION

In this paper, we will focus on the problem of the location of the sensors regarding the solvability of the
disturbance decoupling problem by the dynamic measurement feedback (DDDPM). Aspects of the sensor
location problem have been widely studied in the literature related to different problems. In general, this
problem answers the questions how many sensors we need and where they should be placed so that the
problem is solvable. Most frequently, one desires to place the sensors so as to be able to estimate the states
or system parameters [2,16,18,19] or to detect the changes in the system behaviour [1]. The latter aspect is
strongly connected to fault detection and isolation problems [3–7]. The problem considered in this paper
falls into the last category. It was shown in [11] that the DDDPM is closely related to the fault tolerant
control. In [11], it was assumed that the faults are detected and isolated, after which a subsystem that does
not depend explicitly on the faults is found. In this sense, the sensor location problem considered in this
paper can be used to ensure that the subsystem one looks for in [11] has the maximal possible dimension.

Note that to choose the number of sensors and their locations such that the DDDPM becomes solvable,
one has to be able to check the solvability of the DDDPM. For that reason, this paper relies on the necessary
and sufficient solvability conditions for the DDDPM [12]. The conditions given in [12] were developed for
discrete-time nonlinear systems and depend on the existence of a certain controlled invariant vector function.
To compute this vector function, the algorithms were given in [11] and [12], but neither of them is easily
computable.

∗ Corresponding author, arvo@cc.ioc.ee



318 Proceedings of the Estonian Academy of Sciences, 2016, 65, 4, 317–329

In this paper, we first give, under some assumptions, an explicit formula to compute the required
controlled invariant vector function. After that the sensor location problem is considered.

A condition is given that guarantees that the selection of an output function H results in the solvability
of the DDDPM. One looks for the maximal (in the sense of preorder ≤ defined in Section 2) vector function
H that satisfies the given condition. The difficulty is that the vector function H one looks for is not unique,
and thus many possibilities exist for finding it. We present two methods to find the vector function H,
with minimal dimension, which guarantee the solvability of the DDDPM. Note that the measured output
H determines the location of the necessary sensors. Which of these two solutions is better depends on
the specific situation (cost of sensors, possibility of putting a sensor in such a place etc.) and the system
dynamics.

Discrete- and continuous-time nonlinear systems are considered in this paper. The main results are
given for the discrete-time case and the differences compared to the continuous-time case are highlighted.
Although the proofs of some results are pretty much similar to those in the discrete-time case, there are
some results that need a different proof due to the different properties of derivative and shift operators. The
preliminary results of this paper were presented in [13] and [14], where the discrete- and continuous-time
cases were discussed, respectively.

The paper is organized as follows. Section 2 describes the problem statement and recalls briefly the
mathematical tools applied in this paper. Section 3 presents the main results for discrete-time systems. In
Section 4, the continuous-time case is discussed and in Section 5 examples are presented. The paper ends
with conclusions.

2. PRELIMINARIES

2.1. Problem statement

We give the problem statement for discrete-time systems. The continuous-time case can be stated similarly.
In this paper the disturbance decoupling problem under a dynamic measurement feedback (DDDPM) is
studied for discrete-time nonlinear control systems of the form

x(k+1) = f (x(k),u(k),w(k)),
y(k) = h(x(k)),

y∗(k) = h∗(x(k)),
(1)

where x(k) ∈ X ⊆ Rn is the state, u(k) ∈ U ⊆ Rm is the control, w(k) ∈ W ⊆ Rρ is the unmeasurable
disturbance, y(k) ∈ Y ⊆ Rp is the measured output, and y∗(k) ∈ Y∗ ⊆ RL is the output to be controlled. The
DDDPM for system (1) can be stated as follows: find a vector function z(k) = φ(x(k)), z(k) ∈ Rq and a
regular dynamic measurement feedback of the form

z(k+1) = F(z(k),y(k),v(k)),
z(0) = φ(x(0)),
u(k) = G(z(k),y(k),v(k)),

(2)

where v(k) ∈ V ⊆ Rm and rank[∂G/∂v] = m, such that the values of the outputs to be controlled y∗(k),
for k ≥ 0, of the closed-loop system (see Fig. 1) are independent of the disturbances w(k). Note that
we call the compensator described by (2) regular if it generically defines the (y,z)-dependent one-to-one
correspondence between the variables v(k) and u(k). One says that the disturbance decoupling problem is
solvable via static output feedback if u(k) = G(y(k),v(k)). We are searching for generic solutions, i.e. for
solutions that are valid on some open and dense subsets of suitable domains if they are valid on some point
of this domain.
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Fig. 1. Closed-loop system, where (z,z
′
)T = T (x) is a state transformation, hz

∗(z) := h∗(T−1(z,z
′
)) and hz(z,z

′
) := h(T−1(z,z

′
)).

Note that the solution to the DDDPM depends on the measured output y(k). The main goal of this paper
is to find for a given system

x(k+1) = f (x(k),u(k),w(k)),
y∗(k) = h∗(x(k))

(3)

a measured output y(k) = H(x(k)) such that the DDDPM is solvable for (3).

2.2. The algebra of functions

The mathematical approach called the algebra of functions [20] will be used to address the problem. We
recall briefly the definitions and concepts to be used in this paper, see also [15]. Denote by SD and SX the
sets of vector functions with the domains D = X ×U ×W and X , respectively. On SD is defined a preorder
≤, which induces an equivalence relation ∼=.

Definition 1. (i) Given α,β ∈ SD, one says that α ≤ β if there exists a function γ such that β (ζ ) = γ(α(ζ ))
for ζ ∈ D.

(ii) If α ≤ β and β ≤ α , then α and β are called strictly equivalent, denoted by α ∼= β .

The relation ∼= is an equivalence relation and divides the elements of SD into equivalence classes for
which the relation ≤ is partial order. The set of these equivalence classes is, together with the relation ≤,
a lattice, since 0 := [x,u,w] ≤ α ≤ 1 for all α ∈ SD, where 1 is the equivalence class containing constant
vector functions. This allows us to define the binary operations × and ⊕ as

α ×β = inf(α,β ), α ⊕β = sup(α,β ) (4)

for all α,β ∈ SD. Note that hereinafter we work with the equivalence classes, i.e. the sign ‘=’ should be
understood as ‘∼=’.

The previously defined lattice will be connected to the system dynamics (1) through the following binary
relation ∆.

Definition 2. Given α,β ∈ SX , one says that (α,β ) ∈ ∆ if there exists a function f∗ such that for all
(x,u,w) ∈ D,

β ( f (x,u,w)) = f∗(α(x),u,w). (5)

The binary relation ∆ is mostly used for the definition of the operators m and M.
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Definition 3. (i) The function m(α) is a minimal vector function β ∈ SX that satisfies (α,β ) ∈ ∆;
(ii) M(β ) is a maximal vector function α ∈ SX that satisfies (α,β ) ∈ ∆.

Some important properties of the relation ≤ and operators ⊕, ×, and M are given by the following
Lemma.

Lemma 1 ([20]). Let α , β , and γ be some vector functions from SX . Then
1. α ≤ β ⇔ α ×β = α ⇔ α ⊕β = β ;
2. α ≤ β ⇒ M(α)≤ M(β );
3. M(α ×β ) = M(α)×M(β ).

3. MAIN RESULTS

3.1. The solution of the DDDPM

In this subsection the solution to the DDDPM is given. Compared to [12], improved proofs are provided
and an explicit formula is found for the computation of the controlled invariant vector function ξ on which
the solution of the DDDPM depends.

First, some important definitions are recalled.

Definition 4. The vector function α ∈ SX is said to be (h, f )-invariant if (α ×h,α) ∈ ∆. In case h = 1, the
vector function α is said to be f -invariant.

Definition 5. The vector function α ∈ SX is said to be controlled invariant if there exists a regular static
state feedback u = G(x,v) such that α is f -invariant for the closed-loop system.

Definitions 4 and 5 are generalizations of the concepts of conditioned invariant and controlled invariant
distributions, respectively, as given, for instance in [10]. See more about their relationship in [12].

For checking whether a vector function α is (h, f )-invariant ( f -invariant), we use the following Lemma.

Lemma 2 [(20)]. The function α is (h, f )-invariant ( f -invariant) if and only if

α ×h ≤ M(α) (α ≤ M(α)). (6)

Note that when vector functions α and β are (h, f )-invariant, then so is α×β . This means that when one
looks for a minimal (h, f )-invariant vector function α satisfying µ ≤ α for some µ ∈ SX , then it is uniquely
defined. The same is true for f -invariant vector functions, since these are a special case of (h, f )-invariance.

Lemma 3. Let α and β be minimal (h, f )-invariant and f -invariant functions satisfying the conditions
µ ≤ α and µ ≤ β for some function µ , respectively. Then α ≤ β .

Proof. Since β is also (h, f )-invariant, then α × β must be (h, f )-invariant, which satisfies µ ≤ α × β .
Because, by assumption, α is a minimal (h, f )-invariant vector function satisfying the conditions µ ≤ α ,
then α = α ×β . By Lemma 1, α ≤ β . �

To present the results on the DDDPM, find first a minimal (containing the maximal number of
functionally independent components) vector function α0(x) such that its forward shift α0( f (x,u,w)) does
not depend on the unmeasurable disturbance w. The function α0(x) plays an important role in the solution
of the DDDPM below.

The next theorem gives a condition to check if a system is disturbance decoupled or not.

Theorem 1 [11]. System (1) is disturbance decoupled if and only if there exists an f -invariant function ϕ
such that α0 ≤ ϕ ≤ h∗.
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Theorem 2. System (1) can be disturbance decoupled by feedback (2) if and only if there exist an controlled
invariant function ϕ and an (h, f )-invariant function ψ such that

α0 ≤ ψ ≤ ϕ ≤ h∗. (7)

Proof. Necessity. Denote by f̃ and ∆̃ the function f and the relation ∆, respectively, for the closed-loop
system (1)–(2). Assume that there exists a feedback (2) that solves the DDDPM. Then, by Theorem 1, there
exists an f̃ -invariant function ϕ such that α0 ≤ ϕ ≤ h∗. Obviously, ϕ is controlled invariant for the original
system (1). In (2), the function φ =: ψ is clearly (h, f )-invariant and the condition α0 ≤ ψ is satisfied.
Because ψ is (h, f )-invariant, then (ψ ×h,ψ) ∈ ∆ and because u = G(z,y,v) depends only on z = ψ(x) and
y = h(x), then (ψ ×h,ψ) ∈ ∆̃ holds, i.e. ψ is (h, f̃ )-invariant. Then ψ ≤ ϕ by Lemma 3.

Sufficiency. Given in [12]. �
The algorithm below can be used to find the vector function ψ in Theorem 2. It computes the minimal

(h, f )-invariant vector function α that satisfies the condition α0 ≤ α .

Algorithm 1 [15]. Given α0, compute recursively for i ≥ 1, using the formula

α i+1 = α i ⊕m(α i ×h), (8)

the sequence of non-decreasing vector functions α0 ≤ α1 ≤ α2 ≤ . . . ≤ α i ≤ . . . . The sequence converges
in a finite number of steps, since if α i ̸= α i−1, the number of components of the function α i is less than that
of the function α i−1, i = 1,2, . . . . This means that there exists a finite j such that α j ̸= α j−1 but α j+l = α j

for all l ≥ 1. Define α := α j.

Since α is the minimal (h, f )-invariant function satisfying the condition α0 ≤ α , this function is the best
choice for ψ in Theorem 2.

Finding the controlled invariant vector function ϕ in Theorem 2 is more complicated. Below, in Theorem
3 a formula for computing ϕ is given under some assumptions.

Let h∗ = [h∗1, . . . ,h∗L]
T and denote by ri and di the relative degrees of the function h∗i(x) with respect

to the control input u and the disturbance w, respectively. Moreover, we use the notations y∗i(k) =
h∗i(x(k)) =: h∗i,1(x(k)), . . . ,y∗i(k + ri − 1) =: h∗i,ri(x(k)),y∗i(k + ri) =: h∗i,ri+1(x(k),u(k)). We make the
following assumptions:

Assumption 1. di > ri.

From the definition of ri, one has h∗i,ri+1 = f̂i(x,u) for some f̂i.

Definition 6 (vector relative degree).1 The vector (r1, . . . ,rL) is called a vector relative degree of output y∗
if

rank
[∂ ( f̂1(x,u), . . . , f̂L(x,u))T

∂u

]
= L

generically, i.e. everywhere except on the set of zero measure.

Assumption 2. The output y∗ has a vector relative degree.

Note that Assumption 1 is a standard assumption made in the solution of the disturbance decoupling
problem even when the solution is looked for in the form of state feedback. Assumption 2 may be, in
principle, replaced by the assumption of right invertibility (regarding the output y∗). However, this type
of assumption is often made for the same of simplification; in particular here it allows finding the explicit
formula to compute the function ϕ in Theorem 2, allowing us to make the result of Theorem 2 constructive.

Consider the set of equations
f̂i(x,u) = vi i = 1, . . . ,L. (9)

1 This definition is in accordance with Remark 5.1.3. of [9].
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Under Assumptions 1 and 2, the set of equations (9) is generically solvable for u.
Note that the definition of the operator M depends on the function f in Eq. (1). By M̃ we denote the

operator M defined by the function f̃ , which is the state transition map for the closed-loop system (1)–(2).

Theorem 3. Under Assumptions 1 and 2, the maximal controlled invariant function ξ that satisfies the
inequality ξ ≤ h∗ may be computed by the formula

ξ :=
L

∏
i=1

(h∗i,1 ×·· ·×h∗i,ri). (10)

Proof. Since the set of equations (9) is solvable for u, one can find a static state feedback by solving these
equations. We show that the function ξ in (10) is f̃ -invariant. By the third property of Lemma 1, one obtains

M̃(ξ ) =
L

∏
i=1

(M̃(h∗i,1)×·· ·×M̃(h∗i,ri)),

and from the definition of the operator M̃, one has M̃(h∗i, j) = h∗i, j+1, j = 1, . . . ,ri − 1. Since by (9)
h∗i,ri+1 = vi, M̃(h∗i,ri) = 1. Therefore,

M̃(ξ ) =
L

∏
i=1

(h∗i,2 ×h∗i,3 ×·· ·×h∗i,ri ×1)

≥
L

∏
i=1

(h∗i,1 ×h∗i,2 ×·· ·×h∗i,ri ×1) = ξ ,

i.e. ξ ≤ M̃(ξ ). By Lemma 2 the function ξ is an f̃ -invariant or controlled invariant function for the original
system.

Next, let β be another controlled invariant function such that β ≤ h∗ = ∏L
i=1 h∗i,1. As β is controlled

invariant, then β ≤ M̃(β ). Because β ≤ h∗ ⇒ M̃(β )≤ M̃(h∗), see [15], one obtains

β ≤ M̃(β )≤ M̃(h∗) = M̃(
L

∏
i=1

h∗i,1) =
L

∏
i=1

M̃(h∗i,1) =
L

∏
i=1

h∗i,2.

By analogy, β ≤ ∏L
i=1 h∗i, j for j = 3, . . . ,ri. Then, by the definition of operation ×, β ≤ ∏L

i=1(h∗i,1 ×h∗i,2 ×
·· ·×h∗i,ri) = ξ , which means that ξ is the maximal f̃ -invariant function satisfying the condition ξ ≤ h∗. �

Since ξ is the maximal controlled invariant function satisfying the inequality ξ ≤ h∗, this function is the
best choice for ϕ in Theorem 2.

3.2. Sensor location

In this subsection, two methods for finding the unknown measured output function H(x) that make the
DDDPM solvable are described. The goal is to find the vector function H as maximal2 as possible because
typically one wants a minimal number of sensors to be used. By Theorem 2, the function H must guarantee
the existence of an (H, f )-invariant vector function ψ and a controlled invariant vector function ϕ , satisfying
α0 ≤ ψ ≤ ϕ ≤ h∗. Note that the controlled invariant vector function ϕ does not depend on the choice of
H(x), and thus it can be taken equal to the vector function ξ (which has to satisfy α0 ≤ ξ ), defined by

2 Maximal in terms of the preorder ≤.
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(10). In Case 1 below, the function H is computed based on the function α0, in Case 2, the function H is
computed based on the function ξ .

Case 1. In this case, the measured output H is chosen such that the (H, f )-invariant vector function ψ
can be taken ψ = α0. Note that by Algorithm 1, we have α1 = α0⊕m(α0×H). If the choice H guarantees
that m(α0 ×H)≤ α0, then α1 = α0, α = α0 and one can take ψ = α . Therefore ψ ≤ ξ and the DDDPM
is solvable for the given H. The condition m(α0×H)≤ α0 is equivalent to the condition α0×H ≤ M(α0),
which is easier for computing the maximal H satisfying the last inequality.

Case 2. In this case, the measured output H is chosen such that the (H, f )-invariant vector function ψ
can be taken ψ = ξ . By definition, one has to find the maximal function H such that ξ ×H ≤ M(ξ ) is valid,
meaning the function ξ is (H, f )-invariant. Since the condition α0 ≤ ξ holds, the function ξ can be taken
as ψ .

In general, one may take any vector function η that satisfies α0 ≤ η ≤ ξ and find the maximal function
H such that η ×H ≤ M(η) is valid. In this case ψ can be taken equal to η .

In all the cases described above, one needs to find the maximal vector function H that satisfies the
condition λ ×H ≤ M(λ ) for the given λ . Loosely speaking, the function H ‘helps’ the function λ to
satisfy the condition λ ×H ≤ M(λ ). Note that the maximal vector function H that satisfies the condition
λ ×H ≤ M(λ ) is not unique and that there are many different ways to find H.

It is easy to see that choosing H = M(λ ) guarantees always that λ ×H ≤ M(λ ). However, this choice
is not in general maximal3. The previous choice is maximal if and only if M(λ )⊕λ = 1. If not, then one
has to eliminate the elements of M(λ )⊕λ from M(λ ), i.e. to find µ such that

M(λ ) = µ × [M(λ )⊕λ ]. (11)

Then, the choice H = µ guarantees that λ ×H ≤ M(λ ). Really, now one has M(λ ) = H × [M(λ )⊕λ ], and
since M(λ )⊕λ can be written, by the definition of ⊕, in terms of λ , M(λ ) can be written in terms of H
and λ , i.e. λ ×H ≤ M(λ ). The maximality of H is guaranteed if the dimension of the vector µ in (11) also
satisfies

dim µ = dimM(λ )−dim[M(λ )⊕λ ].

This assures that there are no elements in vector µ that can be written in terms of λ and the other elements
of µ .

Another, more heuristic way of finding the maximal vector function H that satisfies λ ×H ≤ M(λ ) is
described below. Take H such that its elements are
(i) all the functions M(λ )i that are components of the vector function M(λ ) and satisfy the condition

λ � M(λ )i;
(ii) all the variables xi on which the vector function M(λ ) depends, but the vector function λ does not.

This H is, in general, not maximal but it can be simplified as follows:
(iii) one can replace H by the equivalent but ‘simpler’ vector function H ′;
(iv) some of the elements of H ′, that can be written in terms of λ and the other elements of H ′, can be

removed.

Example 1 (Demonstration of the points (iii) and (iv)). Let λ (x) = [x1 + x2,x2 + x3]
T and µ(x) =

[x1 + x3, ln(x2)+ x4]
T . Then by the procedure above, one gets H(x) = [x1 + x3, ln(x2)+ x4,x4]

T . It is easy
to see that H(x) is equivalent to H ′(x) = [x1 + x3, ln(x2),x4]

T . Now, ln(x2) can be removed since it can be
written in terms of λ and the other elements of H ′: ln(x2) = ln(0.5(λ1(x)+λ2(x)−H ′

1(x))). Thus one gets
H ′′(x) = [x1 + x3,x4]

T .

Example 2 (Demonstration of the heuristic way to improve the solution). Let λ (x) = [x1+x2,sin(x2)+x3]
T

and µ(x)= [x1+x3,x4]
T . Then one gets H(x)= [x1+x3,x4]

T according to (i) and (ii) of the procedure above.
This function can not be simplified. However, by adding x2 to H as the third component, we can simplify it

3 In terms of the preorder ≤.
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since H1(x) = x1 + x3 = λ1(x)+λ2(x)−H3(x)− sin(H3(x)). So, we get H ′(x) = [x2,x4]
T as a solution. To

resume, consider the variables x j such that λ depends on x j but µ does not, and add these variables to H.

To resume, the following procedure is suggested to solve the sensor location problem under
consideration.
Step 1. Find the functions α0 and ξ .
Step 2. Find the output functions H1 and H2 solving the inequalities α0×H1 ≤ M(α0) and ξ ×H2 ≤ M(ξ ),
respectively.
Step 3. Choose the better solution based on the cost of sensors in respective places or possibilities of putting
the sensor in such a place.

There is also a possibility that the initial system has some sensors described by the output function
y = h(x), but they are deficient to solve the DDDPM. In this case the problem is to find the additional
sensors, described by the output function ya = Ha(x), such that the DDDPM becomes solvable for the
output (y,ya). This problem can be solved by constructing the function H as shown above and finding the
solution of the inequality h×Ha ≤ H by the methods developed above.

4. CONTINUOUS-TIME CASE

In this section continuous-time systems are considered. It is shown that results similar to those in the
discrete-time case are valid for the solvability of the DDDPM and the sensor location problem. Therefore,
only the most important differences are discussed in this section.

The problem statement of the DDDPM is similar for continuous-time systems except that the systems
are in the form

ẋ(t) = f (x(t),u(t),w(t)),
y(t) = h(x(t)),

y∗(t) = h∗(x(t)),
(12)

where x(t) ∈ X ⊆Rn, u(t) ∈U ⊆Rm, w(t) ∈W ⊆Rρ , y(t) ∈Y ⊆Rp, y∗(t) ∈Y∗ ⊆RL and one searches for
the regular feedback

ż(t) = F(z(t),y(t),v(t)),
z(0) = φ(x(0)),
u(t) = G(z(t),y(t),v(t)),

(13)

where z(t) ∈ Rq.
In the methodology, the main difference between the discrete- and continuous-time cases is the definition

of the relation ∆. In the continuous-time case the binary relation ∆ is defined as follows.

Definition 7. Given α,β ∈ SX , one says that (α,β ) ∈ ∆ if there exists a function f∗ such that for all
(x,u,w) ∈ D,

β̇ = f∗(α(x),u,w). (14)

Note that here one has to assume that the vector function β is differentiable. This makes Definition 7 more
restrictive than Definition 2, where β can also be non-smooth.

Of course, since the binary relation ∆ is defined differently in discrete- and continuous-time cases, the
properties of the operators m and M are slightly different in the continuous-time case. Namely, property 2
in Lemma 1 is different, taking the form

α ≤ β ⇒ α ×M(α)≤ M(β ). (15)

Now, one can generalize Theorems 1 and 2 to the continuous-time case.

Theorem 4. System (12) is disturbance decoupled if and only if there exists an f -invariant function ϕ such
that α0 ≤ ϕ ≤ h∗.
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Proof. Coincides with that in the discrete-time case given in [11]. �

Theorem 5. System (12) can be disturbance decoupled by feedback (13) if and only if there exist a
controlled invariant function ϕ and an (h, f )-invariant function ψ such that

α0 ≤ ψ ≤ ϕ ≤ h∗. (16)

Proof. Necessity. The proof coincides with the proof of Theorem 2.

Sufficiency. The proof differs from the discrete-time case due to different properties of the operator M.
Since ϕ is controlled invariant, there exists a static state feedback u = G(x,v) such that ϕ̇ = ∂ϕ

∂x f (x,u,w) =
χ(ϕ(x),v) for some function χ . Since α0 ≤ ϕ ≤ h∗, then by Theorem 4, the closed-loop system is
disturbance decoupled. It remains to show that function G depends only on the variables z, y, and v. Take in
(13) z(t) = φ(x(t)) and set in (16) ψ := φ . Since φ ≤ ϕ , then φ ×M(φ) ≤ M(ϕ) by (15). It follows from
the definitions of the (h, f )-invariant function that φ ×h ≤ M(φ); since φ ≤ φ , then by the definition of the
operation ×, φ ×h ≤ φ ×M(φ). Therefore, one gets φ ×h ≤ M(ϕ). By the definition of the operator M,
M(ϕ)×u ≤ ∂ϕ

∂x f (x,u,w) = ϕ̇ (one takes into account that ∂ϕ
∂x f (x,u,w) does not depend on w since α0 ≤ ϕ ).

Thus φ ×h×u ≤ M(ϕ)×u ≤ ϕ̇ = χ(ϕ(x),v). This means that χ can be written in terms of z, y, and v and
then the function G depends also only on z, y, and v. �

Just like above, one can use Algorithm 1 to compute the minimal (h, f )-invariant vector function α
satisfying α0 ≤ α . However, here we give another possibility for computing α since unlike in the discrete-
time case, there does not exist a formula or an algorithm to compute m(β ) for a given β . Observe that here
unlike in Algorithm 1 we do not rely on the operator m but on the operator M.

Given α0, compute recursively for i ≥ 0, using the formula

∂α i+1(x)
∂ t

=
∂α i(x)

∂ t
⊕ (α i(x)×h(x)×u), (17)

(we will use below the notation α̇ i+1 = α̇ i ⊕ (α i × h× u) for simplicity) the sequence of non-decreasing
functions

α0 ≤ α1 ≤ α2 ≤ . . .≤ α i ≤ . . .

(follows from the property of the operation ⊕). The sequence converges in a finite number of steps since if
α i ̸= α i−1, the number of components of the function α i is less than that of the function α i−1 or equal to it,
i = 1,2, .... This means that there exists a finite j such that α j ̸= α j−1 but α j+l = α j for all l ≥ 1. Define
α := α j.

Note that finding α(i+1) from its time derivative requires that the following set of partial differential
equations be solved for α i+1:

∂α i+1

∂x
f (x,u,w) = α̇ i+1,

where on the right-hand side is the vector function obtained from formula (17).

Theorem 6. The function α is minimal (h, f )-invariant satisfying the condition α0 ≤ α .

Proof. Since α := α j = α j+l , then α̇ j = α̇ j+l and α̇ j+1 = α̇ j = α̇ j ⊕(α j ×h×u). This equality implies the
relation (α j ×h×u)≤ α̇ j or (α ×h×u)≤ α̇. The last inequality can be rewritten in the form (α ×h×u)≤
∂α
∂x f (x,u,w), which means that (α × h,α) ∈ ∆, i.e. α is an (h, f )-invariant function. Assume that β is
another (h, f )-invariant function satisfying the condition α0 ≤ β . Then (β ×h×u)≤ ∂β

∂x f (x,u,w) = β̇ ; this
relation and the condition α0 ≤ β imply that (α0 ×h×u)≤ β̇ and α̇0 ≤ β̇ . Since α̇1 = α̇0 ⊕ (α0 ×h×u),
then by the definition of the operation ⊕ one obtains α̇1 ≤ β̇ ; since the function f is surjective, α1 ≤ β . By
analogy, α i ≤ β for i ≥ 1, so α ≤ β . �
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Next, it is shown that Theorem 3 can also be generalized for continuous-time systems. For that,
let y∗i(t) = h∗i(x(t)) =: h∗i,1(x(t)), y(1)∗i (t) =: h∗i,2(x(t)), y(ri−1)

∗i (t) =: h∗i,ri(x(t)) and h∗i,ri+1(x(t),u(t)) :=
y(ri)
∗i (t) = f̂i(x(t),u(t)) for some f̂i.

Theorem 7. Under Assumptions 1 and 2, the maximal controlled invariant function ξ that satisfies the
inequality ξ ≤ h∗ may be computed by formula (10).

Proof. The proof consists of two parts. The first part (ξ computed from (10) is f̃ -invariant) practically
coincides with the respective part of Theorem 3. In the second part of the proof (ξ is maximal among
such invariant functions) there is a small difference due to the different properties of the operator M in the
continuous-time case. In particular, if β ≤ h∗, then β × M̃(β ) ≤ M̃(h∗), but since β ≤ M̃(β ), one obtains
M(β )≤ M(h∗), which agrees with the discrete-time case. �

As above, the functions α and ξ are the best choices for ψ and ϕ , respectively, in Theorem 5.
Recall that in Section 3 we described methods for finding the unknown measured output function H(x)

that makes the DDDPM solvable. In the continuous-time case the methods are the same. That is, one wants
to make a vector function λ that satisfies α0 ≤ λ ≤ ξ , (H, f )-invariant. The methods for computing such H
are the same for discrete- and continuous-time cases.

5. EXAMPLES

Example 3. Consider the control system

x1(k+1) = ϑ1x1(k)2sign(x1(k))+ϑ2x2(k)
+x1(k)+ϑ6u1(k)+ϑ6u2(k),

x2(k+1) = ϑ3x1(k)x2(k)+ x2(k)+ ϑ7
x1(k)

u1(k)
+x3(k)+ϑ9u3(k),

x3(k+1) = ϑ4x4(k)+ϑ5x3(k)sign(x1(k))
+x3(k)+ϑ9u3(k),

x4(k+1) = ϑ10x3(k)+ x4(k),

x5(k+1) = ϑ11x1(k)x2(k)+ x5(k),

y∗(k) = x4(k).

(18)

Equations (18) constitute a simplified sampled-data model of the underwater vehicle moving on a vertical
plane developed under the assumptions of small x1 and x2 values, see [17]. Model variables have the
following meaning: x1 is the velocity; x2 is the angle of the trajectory; x4 and x3 are the trim and its time
derivative, respectively; x5 is the depth. The model coefficients ϑ1 ÷ϑ11 characterize the masses, inertia,
and the structural features of the vehicle. The inputs u1, u2, and u3 are the forces of the upper and bottom
stern thrusters and the vertical bow thruster, respectively.

Our goal is to find the measurement output in such a manner that allows us to solve the DDDPM.
Compute, according to (10), the vector function ξ = [x4,ϑ10x3 + x4]

T , which is equivalent to ξ =
[x3,x4]

T . Then M(ξ ) = [ϑ10x3 + x4,x3ϑ4x4 + ϑ5x3sign(x1)]
T . Note that α0 = [x1,x3,x4,x5]

T and the
necessary condition α0 ≤ ξ is satisfied. Since M(ξ )⊕ ξ = ϑ10x3 + x4, then dimH = 1. It is obvious
that the inequality ξ ×H ≤ M(ξ ) is valid for H(x) = x1.

Another possibility is to define H such that the vector function α0 becomes (H, f )-invariant. For that
one can take H = x2, since α0 ×H = 0 and thus α0 ×H ≤ M(α0) is satisfied.
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Example 4. Consider the control system described by the equations

ẋ(t) =


−
√

x1(t)+
√

x3(t)+ γau1(t),
−
√

x2(t)+
√

x4(t)+ γbu2(t),
−
√

x3(t)+(1− γb)u2(t)+w(t),
−
√

x4(t)+(1− γa)u1(t)+w(t),


y∗1(t) = x1(t),
y∗2(t) = x2(t).

These equations constitute the normalized four-bank benchmark process [8], where the state variables x1,
x2, x3, and x4 are liquid levels of Tank 1, Tank 2, Tank 3, and Tank 4, respectively; u1 and u2 are the
control inputs.

Compute the vector functions α0(x) = [x1,x2,x3 − x4]
T and ξ (x) = [x1,x2]

T .
First, find H such that ξ becomes (H, f )-invariant. For that, compute M(ξ )(x) = [−√

x1+
√

x3,−
√

x2+√
x4]

T . Since M(ξ )⊕ξ = 1, then dimH = 2. The inequality ξ ×H ≤ M(ξ ) is valid if H(x) = [x3,x4]
T .

Next, find H such that α0 becomes (H, f )-invariant. Since α0 ×H = [x1,x2,x3,x4]
T = 0 for H = x3 or

H = x4, then α0 ×H ≤ M(α0) for both cases. The choice is y = H(x) = x3.
Set z := x3 − x4, the compensator is described by the equations

ż(t) = −
√

z(t)+
√

y(t)− z(t)
+ (1− γb)u2(t)− (1− γa)u1(t),

u1(t) = (1/γa)(v1(t)−
√

y(t)),

u2(t) = (1/γb)(v2(t)−
√

y(t)− z(t)).

Example 5. Consider the control system described by the equations

ẋ(t) =


sin(u1(t)− x1(t)+ x5(t)),

u2(t)−w(t)x2
2(t),

w(t)x2(t),
x1(t)cos(x3(t))+u2(t),

x1(t)x4(t),


y∗1(t) = x1(t),
y∗2(t) = x5(t).

Compute α0(x) = [x1,(ln(x2)+x3),x4,x5]
T and ξ (x) = [x1,x4,x5]

T by (10). Since r1 = 1, r2 = 2, d1 = 4,
and d2 = 3, Assumption 1 holds. Equations (9) are of the form

sin(u1 − x1 + x5) = v1,
(cos(x3)+u2)sin(u1 − x1 + x5) = v2.

(19)

Clearly, Assumption 2 holds and these equations are solvable for u1 and u2.
Observe that sometimes one may simplify the solution if in (9) f̂i(x(t),u(t)) may be rewritten in the

form of a composite function for some ψ and f i:

f̂i(x(t),u(t)) = ψ( f i(x(t),u(t))).

For our example, one has y(1)∗1 (t) = sin(u1(t)−x1(t)+x5(t)), then ψ(.) = sin(.) and f 1(x,u) = u1 −x1 +x5.
As a result, equations (19) take the form

u1 − x1 + x5 = v1,
(cos(x3)+u2)sin(v1) = v2.
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According to Case 1 in Section 3.2, M(α0)(x) = [x1 − x5,x2,x1 cos(x3),x1x4]
T . Clearly, one has to set

y = H(x) = x2 to satisfy the condition α0 ×H ≤ M(α0).
The compensator corresponding to this solution is given by

ż1(t) = sin(v1(t)),

ż2(t) = 1
y(t)

(
v2(t)

sin(v1(t))
− cos(z2(t)− ln(y(t)))

)
,

ż3(t) = z1(t)v2(t)/sin(v1(t)),
ż4(t) = z1(t)z3(t),
u1(t) = v1(t)+ z1(t)− z4(t),
u2(t) = v2(t)

sin(v1(t))
− cos(z2(t)− ln(y(t))).

Here z := α0(x), i.e. z1 := x1, z2 := ln(x2)+ x3, z3 := x4, z4 := x5.
According to Case 2 in Section 3.2, M(ξ )(x) = (x1 − x5)× x1 cos(x3)× x1x4. Clearly, one has to set

y = H(x) = x3 to satisfy the condition ξ ×H ≤ M(ξ ).
The compensator corresponding to this solution is described by the equations

ż′1(t) = sin(v1(t)),
ż′2(t) = z′1(t)v2(t)/sin(v1(t)),
ż′3(t) = z′1(t)z

′
2(t),

u1(t) = v1(t)+ z′1(t)− z′3(t),
u2(t) = v2(t)

sin(v1(t))
− cos(y(t)),

where z′ := ξ (x), i.e. z′1 := x1, z′2 := x4, z′3 := x5.

6. CONCLUSION

In this paper, the DDDPM was addressed for discrete- and continuous-time nonlinear systems. A formula
was given to find, under some assumptions, a controlled invariant function ξ , which is essential in the
solution of the DDDPM. Then, the methods for finding a measured output H(x), which guarantee the
solvability of the DDDPM, were suggested. Future work will include improving the formula for computing
the controlled invariant function ξ such that one does not need to assume that controlled output y∗ has vector
relative degree.
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Häiringu kompenseerimine mõõdetava tagasisidega: sensorite paiknemine

Arvo Kaldmäe, Ülle Kotta, Alexey Shumsky ja Alexey Zhirabok

On uuritud võimalusi sensorite paigutamiseks nii, et häiringu kompenseerimise ülesanne oleks lahen-
duv dünaamilise mõõdetavatest väljunditest sõltuva tagasiside abil. Põhitulemused on esitatud disk-
reetse ajaga mittelineaarsete süsteemide klassile ja seejärel on käsitletud pideva ajaga süsteeme, kes-
kendudes ainult erinevustele diskreetse juhuga võrreldes. Esiteks: töös on täiustatud tulemusi häiringu
kompenseerimiseks. Kui varasemalt sõltusid tingimused häiringu kompenseerimiseks mõõdetava tagasi-
sidega teatud invariantsest vektorfunktsioonist, siis antud artiklis on kahel loomulikul eeldusel tõestatud
valem selle invariantse vektorfunktsiooni arvutamiseks. Järgnevalt on mõõdetava väljundi leidmiseks välja
pakutud mitmeid meetodeid, mis garanteerivad häiringu kompenseerimise ülesande lahenduvuse. See
mõõdetav väljund määrab sensorite arvu ja koha, kuhu need tuleb paigutada. Välja pakutud meetoditega
otsitakse minimaalse dimensiooniga mõõdetavat väljundit, mis vastab minimaalsele sensorite arvule.
Artiklis esitatud tulemusi on demonstreeritud mitme näitega.


