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Abstract. The paper studies the model matching problem for nonlinear systems, described by a higher order input–output
differential equation, not necessarily realizable in the state–space form. Only the feedforward solution is looked for. The problem
statement and solution rely on the recently introduced concept of a generalized transfer function for nonlinear systems. We require
that the transfer functions of the compensated system and that of the prespecified model be equal, like in the linear case. However,
in the nonlinear transfer function formalism one does not work with equations but with differential one-forms, and the existence
of the compensator is restricted by integrability of the one-form corresponding to the compensator. Necessary and sufficient but
nonconstructive solvability conditions are given. The second theorem lists a number of different (constructive) conditions under
which the one-form is integrable. Additional freedom is sometimes obtained by forcing the conditions of the second theorem to
hold via introducing assumptions suggested by the Euclidean division algorithm.

Key words: nonlinear control systems, continuous time, model matching problem.

1. INTRODUCTION

The nonlinear model matching problem (MMP) is a typical control problem, which plays an important role
in various other control problems, such as input–output (i/o) linearization, disturbance decoupling, etc. The
problem has been addressed by many authors, using somewhat different problem formulations. In general,
the goal of the MMP is to compensate a given nonlinear system in order to make its behaviour similar to
that of a given nonlinear model. Within the (dominating) state space approach, the typical requirement is
that the difference between the outputs of the model and the compensated system be independent of input or
even zero (in the strong version of the MMP), see [3,4,12,14,19]. The interested reader is referred to [15]
for a more detailed review on the exact model matching of linear systems by state feedback.

The less studied i/o approach requires that the compensated system and the model admit the same
differential polynomial [7], or that the differential (over)fields, associated to the compensated system and,
respectively, to the model be isomorphic [24]. The case of the MMP for linear time-varying systems was
addressed in [17,18]. Some recent results for nonlinear discrete-time systems include [25], where a very
specific class of i/o equationsis is considered, and [1] and the references therein.
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The compensators found within these approaches are not compatible. The state–space approach
sometimes excludes a trivial compensator. The following example from [19] is intended to illustrate the
phenomenon. Consider the system F and the model G, described by equations

ẋ = xu
y = x

and
ξ̇ = ξ v
y = ξ .

The trivial (identity) compensator R, given by u = v, does not give a solution to the MMP because the
difference between the output of the model and the output of the compensated system, (x0 −ξ0)e

∫ t
0 v(τ)dτ , is

independent of v only if the initial states of the model and the state of the system coincide, i.e., that x0 = ξ0.
The i/o approach usually does not exclude the trivial compensator as a solution.

The i/o approach involves other difficulties in the construction of a feedforward solution to the MMP.
As an example, consider the system F and the model G given as

ẏ =−y2 +u and ẏ = v,

respectively. Clearly, the compensator u = y2 + v gives a solution, but this is not a feedforward solution as
it depends on the output y of the system. To find a feedforward solution, one typically takes a number of
derivatives of the feedback solution and uses the relations defined by F and G until the feedforward solution
can be found. In our example, we get

u̇ = 2yẏ+ v̇.

Since by F and G, y =
√

u− v, R, given by

u̇ = 2v
√

u− v+ v̇, (1)

can be considered as a feedforward compensator. However, the compensated system FR that under (1) reads
as

ÿ =−2yẏ+2v
√

ẏ+ y2 − v+ v̇ (2)

is not anymore equivalent to the model G. Really, FR, although irreducible, is of higher order than G.
The issues discussed above motivated the study reported in this paper. Our aim was to find the

feedforward solution to the MMP that does not exclude the trivial compensator (when the model and the
system are, up to notations, identical) and that is able to find the lower order solution than the technique
based on taking derivatives of the feedback solution. We were looking for a solution for systems described
by higher order i/o differential equations not necessarily realizable in the state–space form. Of course, the
approach is still applicable to systems described by the state equations as the state elimination algorithm [2]
ensures that the i/o representation of the form (3) below, at least locally, always exists for such systems. The
problem statement and solution rely on the concept of generalized transfer function for nonlinear systems
[8,26]. We require that the transfer functions of the compensated system and that of the prespecified model
be equal like in the linear case. However, in the nonlinear transfer function formalism one does not work with
equations but with differential one-forms and the existence of the compensator is restricted by integrability
of the one-form corresponding to the compensator. Such a problem statement has not been used yet.

Note that the transfer functions can be easily computed from the i/o equation. In doing so, one associates
with the system two polynomials, as in [27], defined over the field of meromorphic functions. Then, after
fractions of such polynomials are defined [20,21], the transfer function of a nonlinear system is obtained.
This can be interpreted as associating to a nonlinear system, the so-called tangent linear system, see [6], by
using Kähler’s differentials [13]. Then, the ideas similar to those applied for linear time-varying systems
in [5] can be used. Hence, the linearized system description resembles the time-varying linear system
description except that now the time-varying coefficients of the polynomials are not necessarily independent,
see [16]. The preliminary ideas of this paper were discussed in the conference paper [11]. The transfer
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function formalism of nonlinear systems has already been used, for instance to study the realization problem
[10] and to solve the MMP in the discrete-time case [1]. Herein, the continuous-time case is considered.

Two types of solutions, feedforward and feedback compensators, are typically looked for within the
MMP. The paper [1], which focuses on the discrete-time case, addresses both, feedforward and feedback,
solutions. It is shown that the existence of the feedforward solution depends critically on the integrability of
a certain one-form whereas the feedback solution always exists. For this reason, we decided to consider in
this paper only the feedforward solution as more difficult, and provide constructive conditions for checking
whether the solution exists or not. Finally, note that the feedback solution is briefly addressed in the
conference paper [11] and this solution is similar to that from [1] although the computations differ because
the noncommutative polynomial rings, associated to continuous- and discrete-time systems, are different.

The paper is organized as follows. The transfer function formalism of nonlinear systems, with the
properties relevant to the MMP, is discussed in Section 2. The problem statement and the main results are
given in Section 3, the respective results are endowed with examples. Finally, discussion is presented in
Section 4.

2. TRANSFER FUNCTIONS OF NONLINEAR SYSTEMS

Note that throughout the paper we use the abridged notations. First, in order to simplify the exposition we
leave out the time argument t, so ξ := ξ (t). Next, we apply Newton’s notation for the first and second time
derivatives, i.e., ξ̇ := dξ

dt , ξ̈ := d2ξ
dt2 , and a more general notation ξ (k) := dkξ

dtk for the time derivative of an
arbitrary order. Recall briefly mathematical tools from [2] and [8] that are used in this paper. Consider the
single-input single-output nonlinear system Σ, described by the i/o equation of the form

y(n) = φ
(

y, ẏ, . . . ,y(n−1),u, u̇, . . . ,u(m)
)
, (3)

where φ is assumed to be an element of the field of meromorphic functions KΣ of variables from the set
CΣ = {y, ẏ, . . . ,y(n−1),u(i); i ≥ 0}. We want to avoid the situation when two different systems have the same
transfer function. Since the definition of the transfer function is based on the globally linearized system
description dy(n)− dφ(·) = 0 and the differential of a constant c is equal to zero, we assume that φ in (3)
cannot be written as ψ + c for some nonzero c and ψ ∈ K .

Consider the set of symbols dCΣ = {dy,dẏ, . . . ,dy(n−1),du(i); i ≥ 0} and define the formal vector space
of differential one-forms EΣ = spanKΣ

{dCΣ}. Let δΣ denote the derivative operator that acts on KΣ and
EΣ. In particular, δΣ(y(k)) = y(k+1), k = 0, . . . ,n − 2, δΣ(y(n−1)) = φ(y, ẏ, . . . ,y(n−1),u, u̇, . . . ,u(m)), and
δΣ(u(k)) = u(k+1), k ≥ 0. The derivative operator δΣ induces the left skew polynomial ring KΣ[s] of
polynomials in s over KΣ with the usual addition and the (noncommutative) multiplication defined by the
commutation rule

sξ = ξ s+ ξ̇ (4)

for any ξ ∈ KΣ. We define (
k

∑
i=0

αisi

)
v =

k

∑
i=0

αiv(i)

for any v ∈ EΣ. Thus, KΣ[s] represents the ring of linear ordinary differential operators that act on EΣ. Note
that sdψ = dψ̇ for any dψ ∈ EΣ. The skew polynomial ring KΣ[s] is proved to satisfy the following left Ore
condition.

Proposition 1 (left Ore condition). For all nonzero a,b ∈KΣ[s], there exist nonzero a1,b1 ∈KΣ[s] such that
a1b = b1a.
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If the condition of the above proposition holds, then the skew polynomial ring is called the left Ore ring.
Thus, the ring KΣ[s] can be embedded into the field of fractions FΣ by defining fractions as b−1 · a, see
[20,21]. The addition and multiplication in FΣ are defined as

b−1
1 a1 +b−1

2 a2 = (β2b1)
−1(β2a1 +β1a2), (5)

where β2b1 = β1b2 by the Ore condition and

b−1
1 a1 ·b−1

2 a2 = (β2b1)
−1α1a2, (6)

where β2a1 = α1b2 again by the Ore condition.
Due to the noncommutative multiplication rule, (5) and (6) differ from the familiar rules. In particular,

in case of the multiplication (6) one, in general, cannot simply multiply numerators and denominators or
cancel them in a standard manner.

Example 1. Consider two fractions from FΣ, b−1
1 a1 = (s− y)−1 and b−1

2 a2 = s−1. The addition operation
can be performed, according to (5), as

(s− y)−1 + s−1 =

(
s2 −

(
y+

ẏ
y

)
s
)−1(

2s− y−2
ẏ
y

)
,

where the Ore condition β2(s− y) = β1s is satisfied for β1 = s− y− ẏ
y and β2 = s− ẏ

y . The multiplication
operation can be performed, according to (6), as

(s− y)−1 · s−1 = (s2 − ys− ẏ)−1,

where again the Ore condition β2 = α1s is satisfied for α1 = 1 and β2 = s. Observe that s−1 · (s− y)−1 =
(s2 − ys)−1, which confirms that the multiplication is noncommutative.

Once the fraction of two skew polynomials is defined, we can introduce the so-called (generalized)
transfer function of system (3) as an element F(s) ∈ FΣ such that dy = F(s)du. Differentiating (3) yields

a(s)dy = b(s)du, (7)

where a(s) = sn −∑n−1
i=1

∂φ
∂y(i)

si, b(s) = ∑m
i=0

∂φ
∂u(i)

si are polynomials in KΣ[s]. Then,

F(s) = a−1(s)b(s). (8)

Example 2. Consider the system
ÿ = yu2 + yu̇. (9)

Differentiating (9) yields dÿ −
(
u2 + u̇

)
dy = ydu̇ + 2yudu, which, according to (7), can be written as(

s2 − u̇−u2
)

dy = (ys+2yu)du. Then, using (8), the transfer function is

F(s) =
(
s2 − u̇−u2)−1

(ys+2yu).

We recall now the respective properties of the transfer functions of nonlinear systems that are relevant
for the MMP.
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2.1. Properness

Analogously to the linear case let us introduce the definitions.

Definition 2. System (3) is said to be proper if n ≥ m.

Definition 3. The relative degree r of system (3) is defined as r = n−m.

It is, therefore, straightforward to conclude that

Theorem 4. Let F(s) = a−1(s)b(s) be the transfer function of system (3). Then the relative degree of the
system is r = dega(s)−degb(s).

In what follows we denote the relative degree as reldegF(s).

2.2. Integrability

In the linear case an i/o differential equation of a control system can be associated to each (proper)
rational function F(s) = a−1(s)b(s), where a(s) and b(s) are from the commutative polynomial ring
R[s]. However, things are different in the nonlinear case. Given F(s) = a−1(s)b(s), where a(s),b(s)
are from the (noncommutative) skew polynomial ring KΣ[s], a corresponding i/o differential one-form
a(s)dy − b(s)du ∈ EΣ is not necessarily integrable. If the i/o differential form is exact or can be made
exact by multiplying it with an integrating factor, then there exists an i/o differential equation of the form (3)
with the transfer function F(s). To conclude, not every fraction of skew polynomials necessarily represents
a control system, which plays a crucial role in designing compensators. Recall that

Definition 5. A one-form ω ∈ EΣ is said to be exact (integrable) if there exists a function ξ ∈ KΣ (and
λ ∈ KΣ) such that dξ = ω (λdξ = ω).

A one-form ω is integrable if and only if dω ∧ω = 0.

2.3. Transfer equivalence

In the MMP the focus is on designing a compensator for a nonlinear system (3) under which the i/o equation
of the compensated system becomes transfer equivalent to a prespecified model. The necessary notions and
their relation to the transfer function formalism are recalled below. The reader is referred to [2,22,23,27]
for more details.

Definition 6. A nonconstant function f ∈ KΣ is said to be an autonomous variable for system (3) if there
exist an integer ν ≥ 1 and a nonzero meromorphic function ϕ ∈ KΣ such that ϕ( f , ḟ , . . . , f (ν)) = 0.

Definition 7. The system (3) is called irreducible if there does not exist any autonomous variable in KΣ.

Note that irreducibility of system (3) can be easily checked by the subspace H∞, defined below

H1 = spanKΣ

{
dy, . . . ,dy(n−1),du, . . . ,du(m)

}
,

H∞ = spanKΣ

{
ω ∈ H1 | ω(k) ∈ H1, k ≥ 0

}
.

Then, the system is irreducible if and only if H∞ = {0}, see [2]. However, within the polynomial
approach the condition can be stated alternatively as follows.
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Theorem 8 ([27]). System (3) is irreducible if and only if the polynomials a(s),b(s) in (7) have no
(nontrivial) common left factors.

Definition 9. The irreducible i/o equation φir(·) = 0 of system (3) is defined as follows:
• If (3) is irreducible, φir(·) = y(n)−φ(·).
• Otherwise, (3) has an irreducible (autonomous) variable f, satisfying y(n)−φ(·) = ϕ( f , ḟ , . . . , f (ν)).

Then, we define φir(·) = f (·).

Finally, one can introduce the notion of a transfer equivalence of two systems of the form (3) and a
condition for its inspection as follows.

Definition 10. Two systems of the form (3) are said to be transfer equivalent if they admit the same
irreducible i/o differential equation y(k) = φ(y, ẏ, . . . ,y(k−1),u, u̇, . . . ,u(l)).

Theorem 11. Two systems of the form (3) are transfer equivalent if and only if they have the same transfer
function.

Example 3. Consider three systems F1,F2,F3 given, respectively, as

ẏ = yu, (10)
ÿ = ẏu+ yu̇, (11)
ÿ = yu2 + yu̇. (12)

Note that F2 can be obtained by taking a derivative of (10) and F3 by substituting (10) into (11). Although
the set of solutions of F1 is a subset of those of systems F2 and F3, this does not imply that F1,F2, and F3 are
all transfer equivalent. Clearly, the system F2 is transfer equivalent to the system F1, for f := ẏ− yu is an
autonomous variable for the system F2, ÿ− ẏu−yu̇ = ḟ . Thus, (10) is an irreducible i/o differential equation
for both F1 and F2. On the other hand, the system F3 is not transfer equivalent to the system F1 (thereby
neither to the system F2), as (12) is an irreducible i/o differential equation. That is, there does not exist any
autonomous variable f for system (12). In terms of transfer functions we have

F1(s) = (s−u)−1y,

F2(s) =
(
s2 −us− u̇

)−1
(ys+ ẏ) = [s(s−u)]−1sy = (s−u)−1y,

F3(s) =
(
s2 − u̇−u2)−1

(ys+2yu)

with F3(s) ̸= F2(s) = F1(s).

2.4. Interconnection of systems

As in the linear case, the transfer function of two interconnected nonlinear systems, see Fig. 1, can be
computed as a product of the two respective transfer functions [8,26] except that the multiplication is
noncommutative. Mathematically, such an interconnection is viewed as follows.

Let F and R be two nonlinear systems of form (3), described by the i/o equations

y(n) = φ
(

y, ẏ, . . . ,y(n−1),u, u̇, . . . ,u(m)
)
,

u(k) = ψ
(

u, u̇, . . . ,u(k−1), v, v̇, . . . ,v(l)
)
.
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R F- -- u yv

︷ ︸︸ ︷G

Fig. 1. Interconnection of the systems.

The differential field KF associated to the system F consists of meromorphic functions of the variables
CF = {y, . . . ,y(n−1),u(i); i≥ 0}, where δF(y(k))= y(k+1), k= 0, . . . ,n−2 and the higher-order derivatives of y-
variable are obtained from the relation δF(y(n−1)) = φ(·). The differential field KR consists of meromorphic
functions of the variables CR = {u, . . . ,u(k−1),v( j); j ≥ 0}, and δR(u(k−1)) = ψ(·).

Remark 12. Note that two initially independent variables, that is the output of the system R and the input to
the system F , become dependent once the systems are interconnected. By abuse of the notation we therefore
use the same symbol u for both.

The interconnected systems belong to the overfield KFR that consists of meromorphic functions of
variables CFR = {y, . . . ,y(n−1),u, . . . ,u(l−1),v( j); j ≥ 0}, where δFR(u(l−1)) = ψ(·), δFR(y(k)) = y(k+1), k =
0, . . . ,n−2, and the higher-order derivatives of y-variable are obtained from the relation δFR(y(n−1)) = φ(·).
Finally, let FFR denote the corresponding skew field of left fractions of KFR[s], and let F(s) and R(s) be
the transfer functions of the system F and R, respectively. Then, in FFR we have G(s) = F(s) ·R(s), where
G(s) is the transfer function of the interconnection G, see Fig. 1.

The fact that initially independent variables, the output of the system R and the input to the system F ,
become dependent once the systems are interconnected plays a crucial role in the solution of the MMP. This
aspect is demonstrated by the following example.

Example 4. Consider systems F and R given, respectively, as

ÿ = u̇+u2,

u = v

with the transfer functions F(s) = (s2)−1(s+ 2u) and R(s) = 1. To compute the transfer function of their
interconnection, we first map both R and F to the same overfield. The differential field KF consists of
meromorphic functions of variables CF = {y, ẏ,u(i); i ≥ 0} and δF(ẏ) = u̇+u2. The differential field KR is
trivial, as u = v, and consists of meromorphic functions of variables CR = {v( j); j ≥ 0}. The interconnected
systems thus belong to the overfield KFR with CFR = {y, ẏ,v( j); j ≥ 0}, and δFR(ẏ) = v̇+ v2. Therefore, in
FFR we have

G(s) = F(s) ·R(s) =
(
s2)−1

(s+2u) ·1 =
(
s2)−1

(s+2v),

which corresponds to the model G
ÿ = v̇+ v2.

However, also the pair F and R′ given, respectively, as

ÿ = u̇+u2,

u̇ =−u2 + v̇+ v2

with the transfer functions F(s) = (s2)−1(s + 2u) and R′(s) = (s + 2u)−1(s + 2v) produce ‘the same’
interconnected system, i.e. the system with the same irreducible i/o differential equation. Really, the diffe-
rential field KR′ consists of meromorphic functions of variables CR′ = {u,v( j); j ≥ 0}, and δR′(u) =−u2 +
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v̇+ v2. Therefore, the interconnected systems belong to the overfield KFR′ with CFR′ = {y, ẏ,u,v( j); j ≥ 0},
and δFR′(u) =−u2 + v̇+ v2, δFR′(ẏ) = v̇+ v2. Finally, in FFR′ we again have

G′(s) = F(s) ·R′(s) =
(
s2)−1

(s+2u) · (s+2u)−1(s+2v) =
(
s2)−1

(s+2v).

However, the systems R and R′ are not transfer equivalent, i.e. R(s) ̸= R′(s), although the respective
interconnections are. Observe that both R and R′ are irreducible i/o equations. This is in great contrast
to the linear case. The reason is that in the interconnection initially independent variables (the output of the
system R and the input to the system F) become dependent. To conclude, we have found R and R′ such
that F(s) ·R(s) = F(s) ·R′(s) while R(s) ̸= R′(s). The relevant point to notice here is that F(s) ·R(s) and
F(s) ·R′(s) have been computed in two different overfields that are not isomorphic.

3. FEEDFORWARD SOLUTION OF THE MMP

In Example 4 we can think of systems R and R′ as two feedforward solutions of the MMP for the given
system F and the model G. Note that in a feedforward compensator one does not allow (as depicted in
Fig. 1) feedback from the system output y. Finding such a solution to the MMP represents the main scope
of this paper. Using the concept of the transfer equivalence, the problem can be formulated as follows. For a
given system F and a model G find a (proper) feedforward compensator R such that the compensated system
is transfer equivalent to the model. With respect to the results recalled in Section 2.3 it is straightforward to
conclude that such a problem formulation results in the equality of the transfer functions of the model and
that of the compensated system.

Problem statement: Consider a nonlinear system F and a model G, described by the transfer functions

F(s) = a−1
F (s)bF(s) (13)

and
G(s) = a−1

G (s)bG(s), (14)

respectively. Find a (proper) feedforward compensator R, described by the transfer function

R(s) = a−1
R (s)bR(s)

such that the transfer function of the compensated system coincides with that of the model G

G(s) = F(s) ·R(s).

3.1. Solution

Although R(s) = F−1(s)G(s) can be found like in the linear case, the existence of the compensator in the
nonlinear case depends on integrability of the i/o differential form associated to R(s).

Theorem 13. Suppose a system F and a model G are given, both of the form (3), with the transfer functions
F(s) ̸= 0 and G(s), respectively. There exists a feedforward (proper) compensator R = a−1

R (s)bR(s) that
solves the MMP if and only if there exists a differential overfield KFR such that R(s) = F−1(s) ·G(s) =
a−1

R (s)bR(s), where aR(s)du−bR(s)dv ∈ EFR is an integrable one-form. The compensator R is proper if and
only if

reldegG(s)≥ reldegF(s).
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Proof. Sufficiency. Suppose aR(s)du− bR(s)dv ∈ EFR is an integrable differential one-form. That is, there
exists a function ψ(u, u̇, . . . ,u(k),v, v̇, . . . ,v(l)) ∈ KFR such that dψ = aR(s)du−bR(s)dv and thus R(s) is the
transfer function of the compensator

ψ
(

u, u̇, . . . ,u(k),v, v̇, . . . ,v(l)
)
= 0.

Using the transfer function algebra, F(s) ·R(s) = G(s).

Necessity. Suppose there exists a compensator R with the transfer function R(s) = a−1
R (s)bR(s) that solves

the MMP; that is, F(s) ·R(s) = G(s). Then aR(s)du−bR(s)dv is an integrable one-form.
Finally, since reldegG(s) = degaG(s)−degbG(s) and reldegF(s) = degaF(s)−degbF(s), we have

degaG(s)−degbG(s)≥ degaF(s)−degbF(s).

Since degaG(s) = degaF(s)+ degaR(s) and degbG(s) = degbF(s)+ degbR(s), the condition is equivalent
to degaR(s)≥ degbR(s), which means a properness of the compensator R.

Unfortunately, Theorem 13 does not indicate over which differential overfield KFR one needs to look
for the compensator.

Example 5 (continuation of Example 4). Recall that the transfer functions of F and G are

F(s) =
(
s2)−1

(s+2u) and G(s) =
(
s2)−1

(s+2v).

Then, the compensator reads R(s) = F−1(s) ·G(s) = (s+2u)−1(s+2v) and the one-form (s+2u)du− (s+
2v)dv is integrable over both KFR′ and KFR. In KFR′ we directly get R′ : u̇+ u2 = v̇+ v2. In KFR we
have u = v, and thus the transfer function reduces to R(s) = F−1(s) ·G(s) = (s+2u)−1(s+2v) = 1 with the
one-form du−dv being again integrable, and R : u = v. So F−1(s) ·G(s) reduces to transfer functions of the
respective compensators over the respective overfields.

Note that it is not true that whenever R′ solves the MMP also R does. Consider for instance the system
F : y = u and the model G : ẏ+y2 = v̇+v2. Then the only solution is R′ : u̇+u2 = v̇+v2. Clearly, the trivial
compensator R : u = v with the trivial system F cannot give us the model G as it is an irreducible system.

Having the differential overfield KFR over which we check the integrability, practically means that we
already have a compensator one has to find. However, this difficulty can be addressed by applying the
Euclidean division algorithm to check for the possible existence of common factors of denominators and
numerators of the respective transfer functions. We first give a theorem that sheds some light on the problem
we have to solve.

Theorem 14. Suppose a system F and a model G are given, both of the form (3), with the transfer
functions F(s) = a−1

F (s)bF(s) ̸= 0 and G(s) = a−1
G (s)bG(s), respectively. Assume that both F(s) and G(s)

are irreducible representations of the transfer functions. Let R(s) = F−1(s) ·G(s) = a−1
R (s)bR(s). Then

aR(s)du−bR(s)dv ∈ EFR is an integrable differential one-form if either of the following holds:
(i) aG(s) = q(s)aF(s) for some q(s) ∈ K [s];
(ii) aF(s) = q(s)aG(s) for some q(s) ∈ K [s];
(iii) aF(s) = ρF(s)q(s), aG(s) = ρG(s)q(s) for some q(s) ∈ K [s] and ρF(s), ρG(s) in the commutative

polynomial ring R[s].
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Proof. From F and G we have ωF := aF(s)dy−bF(s)du = 0, ωG := aG(s)dy−bG(s)dv = 0, which both are
integrable one-forms.

Part (i): Assume that aG(s) = q(s)aF(s) for some q(s) ∈ K [s]. Then

R(s) = b−1
F (s)aF(s) ·a−1

G (s)bG(s) = b−1
F (s)aF(s) · (q(s)aF(s))−1bG(s) = (q(s)bF(s))−1bG(s)

and the left-hand sides of

aG(s)dy−bG(s)dv = 0,
q(s)aF(s)dy−bG(s)dv = 0,
q(s)bF(s)du−bG(s)dv = 0,

being equal to zero, are integrable one-forms.

Part (ii): Assume now that aF(s) = q(s)aG(s) for some q(s) ∈ K [s]. Then

R(s) = b−1
F (s)aF(s) ·a−1

G (s)bG(s) = b−1
F (s)(q(s)aG(s)) ·a−1

G (s)bG(s) = b−1
F (s)(q(s)bG(s))

and the left-hand sides of

aF(s)dy−bF(s)du = 0,
q(s)aG(s)dy−bF(s)du = 0,
q(s)bG(s)dv−bF(s)du = 0,

being equal to zero, are integrable one-forms.

Part (iii): Assume aF(s) = ρF(s)q(s), aG(s) = ρG(s)q(s) for some q(s) ∈ K [s] and ρF(s),ρG(s) ∈ R[s].
Since ρF(s)ρG(s) = ρG(s)ρF(s), we have

R(s)= b−1
F (s)aF(s)·a−1

G (s)bG(s)= b−1
F (s)ρF(s)q(s)·(ρG(s)q(s))−1bG(s)= (ρG(s)bF(s))−1ρF(s)bG(s).

Now any R[s]-linear combination of integrable one-forms is an integrable one-form too. Therefore,
ρF(s)ωG −ρG(s)ωF = ρG(s)bF(s)du−ρF(s)bG(s)dv is an integrable one-form.

Note that it is still an open problem whether the conditions of Theorem 14 are necessary or not. The
conditions of Theorem 14 suggest that when looking for an integrable one-form associated to R(s), one has
to look for possible common factors of the denominators of F(s) and G(s). This is demonstrated by the
example below.

Example 6. Consider the system F and the model G given, respectively, as

ẏ = yu,

ÿ =
ẏ2

2y
+ yv

with the transfer functions

F(s) = (s−u)−1y and G(s) =
(

s2 − ẏ
y

s+
ẏ2

2y2 − v
)−1

y =
[

s(s− ẏ
y
)

]−1

y.

Note that in (any) KFR we have ẏ = yu. Thus, taking this into account, G(s) = [s(s−u)]−1y and

R(s) = F−1(s) ·G(s) = y−1(s−u) · [s(s−u)]−1y = (sy)−1y = (ys+ ẏ)−1y = (ys+ yu)−1y = (s+u)−1.
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The conditions of Theorem 14 are satisfied. After integrating the one-form du̇+ udu− dv = 0, we get
the compensator R described by the equation u̇ =−u2

2 + v.

Example 7. Consider the system F and the model G given, respectively, as

ẏ = yu̇+u,
ÿ = yv̇+ vẏ+ v,

whose respective transfer functions are

F(s) = (s− u̇)−1(ys+1)

and
G(s) =

(
s2 − vs− v̇

)−1
(ys+ ẏ+1) = [s(s− v)]−1(ys+ ẏ+1).

The conditions of Theorem 14 are not satisfied, since the transfer function

R(s) = F−1(s) ·G(s) = (ys+1)−1(s− u̇) · [s(s− v)]−1(ys+ ẏ+1)

corresponds to a nonintegrable one-form. However, one may try to search for a different overfield in which
the conditions are possibly fulfilled. Since aF(s) = s− u̇ and aG(s) = s(s− v), by assuming u̇ = v, the
conditions are fulfilled. Next, one has to check whether such an overfield exists where u̇ = v. To do so, we
apply Theorem 13 and check integrability of R(s) under the assumption u̇ = v. Compute

R(s) = (ys+1)−1(s− u̇) · [s(s− v)]−1(ys+ ẏ+1) = s−1,

which really corresponds to an integrable one-form sdu−dv. Thus, the compensator R that solves the MMP
is described by the equation u̇ = v.

3.2. Application of the Euclidean division algorithm

Recall that the system F and the model G can be represented by the transfer functions as in (13) and (14).
Let naF , nbF , naG , and nbG be the degrees of the polynomials aF(s), bF(s), aG(s), and bG(s). First, check
integrability of the one-form ωR = aR(s)du − bR(s)dv over ‘the most general’ overfield KFR where we
assume all u(k), k = 0, . . . ,nbF +naG , to be independent variables. That is, we are looking for a compensator
of order nbF +naG (or one which is transfer equivalent to it). However, Examples and 7 demonstrated that,
regardless of whether ωR is integrable over KFR or not, there may exist another field K ′

FR over which ωR is
(also) integrable. The compensators found may even not be transfer equivalent (see Example ). Hence, to
find a lower-order compensator, if it exists, we need to look for possible common factors of the respective
polynomials of F(s) and G(s), and check then the existence of a solution by applying Theorem 13. In
particular, we check integrability of the respective one-form. Naturally, we are interested in finding the
greatest common right divisors (factors) of aG(s) and aF(s) that can be computed by the Euclidean division
algorithm summarized below.

Procedure:

Step 1. If degaG(s) ≥ degaF(s) set r0(s) := aG(s), r1(s) := aF(s); otherwise, set r0(s) := aF(s), r1(s) :=
aG(s). By the Euclidean division algorithm compute recursively

rk−1(s) = qk(s)rk(s)+ rk+1(s), k > 1 (15)

until some rk+1(s) is zero. Then rk(s) is the greatest common right divisor of aG(s) and aF(s). Note
that the algorithm always terminates and the remainders are made monic before proceeding to the next
round of division.
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Step 2. Check the conditions of Theorem 14 and, if fulfilled, stop. If not, or if we are interested in finding
a lower-order compensator than the one found, set i := k and continue.

Step 3. Find, if possible, a function ψ(u, u̇, . . . ,u(k),v, v̇, . . . ,v(l)) such that ψ(·) = 0 makes ri(s) vanish.
That is, we force the last nonzero remainder in (15) to become zero, which, if possible, will introduce
some (differential) relations between u and v variables. This in turn makes ri−1(s) the greatest common
(right) divisor of aG(s) and aF(s). Check the conditions of Theorem 14 and, if fulfilled, check the
integrability of R(s) = F−1(s) ·G(s) by applying Theorem 13. If integrable, stop. If not, or if one is
interested in finding a lower-order compensator than the one just found, then set i := i− 1 and repeat
Step 3, or in case i = 0, stop.

Example 8. Consider the system F and the model G given, respectively, as

ÿ = ẏu̇+u and ÿ = ẏv

with the transfer functions F(s) = (s2 − u̇s)−1(ẏs+1) and G(s) = (s2 − vs)−1ẏ.

Step 1: Set r0(s) := s2 − vs, r1(s) := s2 − u̇s, and compute the sequence

r0(s) = q1(s)r1(s)+ r2(s) = 1 · r1(s)+(u̇− v)s,
r1(s) = q2(s)r2(s)+ r3(s) = (s− u̇) · s.

Hence, the greatest common right divisor of aG(s) and aF(s) is s.

Step 2: The conditions of Theorem 14 are not fulfilled because the one-form corresponding to R(s) =
F−1(s) ·G(s) is not integrable.

Step 3: Require r2(s) = (u̇− v)s = 0, resulting in u̇− v = 0. Then r1(s) = s2 − u̇s is the greatest common
right divisor. The conditions of Theorem 14 are now fulfilled. However, we need to check whether there
actually exists such an overfield KFR in which u̇−v= 0 holds by applying Theorem 13 under the assumption
u̇− v = 0. Compute

R(s) = F−1(s) ·G(s) = (ẏs+1)−1(s2 − u̇s) ·
(
s2 − vs

)−1
ẏ = (ẏs+1)−1ẏ.

Unfortunately, the one-form (ẏs+ 1)du− ẏdv is not integrable, meaning that there does not exist such
KFR in which u̇− v = 0. Thus, a feedforward compensator that solves the MMP does not exist.

Example 9. Consider the system F and the model G given, respectively, as

ÿ = y
ü
u
− y

u̇2

u2 +
u̇
u

and y(3) = ẏv+ yv̇+ v

with the transfer functions

F(s) =
(

s2 +
u̇2

u2 −
ü
u

)−1( y
u

s2 − 2yu̇−u
u2 s+

2yu̇2

u3 − yü+ u̇
u2

)
and

G(s) =
(
s3 − vs− v̇

)−1
(ys+ ẏ+1).
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Step 1: Set r0(s) := s3 − vs− v̇ = s(s2 − v), r1(s) := s2 + u̇2

u2 − ü
u and compute

r0(s) = s · r1(s)+ s
(

ü
u
− u̇2

u2 − v
)
, r2(s) =

(
ü
u
− u̇2

u2 − v
)

s+
(

ü
u
− u̇2

u2 − v
)(1)

,

r1(s) = (s−a) · (s+a) r3(s) = a2 + ȧ+
u̇2

u2 −
ü
u
,

+a2 + ȧ+
u̇2

u2 −
ü
u
,

(s+a) = (s+a) ·1, r4(s) = 0,

where a = ( ü
u −

u̇2

u2 − v)(1)/( ü
u −

u̇2

u2 − v). The greatest common right divisor of aG(s) and aF(s) is 1.

Step 2: The conditions of Theorem 14 are not fulfilled. That is, R(s) = F−1(s) ·G(s) is not integrable.

Step 3: Require r3(s) = 0, which is satisfied by

(
ü
u
− u̇2

u2 − v
)(2)( ü

u
− u̇2

u2 − v
)
+

(
ü
u
− u̇2

u2

)(
ü
u
− u̇2

u2 − v
)2

= 0.

Then (s+ a) is the greatest common right divisor. The conditions of Theorem 14 are not fulfilled. Repeat
Step 3 for r2(s). Require r2(s) = 0, which is satisfied by

ü
u
− u̇2

u2 − v = 0. (16)

Then, r1(s) = s2 + u̇2

u2 − ü
u is the greatest common right divisor. The conditions of Theorem 14 are fulfilled,

we need to check the integrability by applying Theorem 13 under assumption (16). Compute

R(s) = F−1(s) ·G(s) =
(

y
u

s2 − 2yu̇−u
u2 s+

2yu̇2

u3 − yü+ u̇
u2

)−1(
s2 +

u̇2

u2 −
ü
u

)
·(

s(s2 − v)
)−1

(ys+ ẏ+1)

=

(
y
u

s2 − 2yu̇−u
u2 s+

2yu̇2

u3 − yü+ u̇
u2

)−1

· s−1(ys+ ẏ+1)

=

(
s
(

y
u

s2 − 2yu̇−u
u2 s+

2yu̇2

u3 − yü+ u̇
u2

))−1

(ys+ ẏ+1)

=

(
(ys+ ẏ+1)

(
1
u

s2 − 2u̇
u2 s+

2u̇2

u3 − ü
u2

))−1

(ys+ ẏ+1)

=

(
1
u

s2 − 2u̇
u2 s+

2u̇2

u3 − ü
u2

)−1

.

The one-form (1
u s2− 2u̇

u2 s+ 2u̇2

u3 − ü
u2 )du−dv is integrable, and therefore, the compensator given by (16) solves

the MMP. Note that employing the standard differential algebraic methods, as mentioned in Introduction,
would give us here a feedforward compensator, described by the 5th order differential equation, and not
necessarily equivalent to the model.
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4. DISCUSSION

The paper presented sufficient conditions for the existence of the feedforward solution to the nonlinear MMP,
applying the polynomial approach and transfer function formalism. The requirement that the compensated
system and the model admit the same irreducible i/o differential equation results in the equality of the
respective transfer functions. The problem statement and the solution are direct generalizations of those
from the linear theory. However, the existence (which is always guaranteed in the linear case) is now
restricted by the integrability condition of a certain differential one-form. Theorem 14 lists a number of
conditions under which the above one-form is integrable. Whether this list is complete or not, is an open
problem. The interesting point to mention is that unlike the linear case, the solution is not unique and the
compensators that result in the problem solution are not necessarily even transfer equivalent to each other.
Additional freedom is sometimes obtained by forcing the conditions of Theorem 14 to hold by making
certain assumptions in the application of the Euclidean division algorithm.

As for possible future direction, the MMP with stability is a problem worth addressing. That is, one
has additionally to require that the set of unstable zeros of system (3) be a subset of those of the model.
Unfortunately, this requirement is very difficult to handle. One idea is to use the Euclidean division
algorithm to look for possible common factors of the numerators of the respective transfer functions.

Another future direction is to look for nonregular solutions of the MMP as done in [12] within the
state–space formalism. Note that our approach is applicable to a larger class of nonlinear systems since it
does not require that the nonlinear system should have a state–space representation. Again, the Euclidean
division algorithm seems to be a proper tool. The nonregular solutions may be obtained when one relaxes
the requirement for the remainder to vanish (see Step 3 of the Procedure). This would result in some
interdependence of the variables of the system, the compensator, and the model. For instance, one may
require that some inputs identically equal zero.

Finally, as mentioned, our approach does not require realizability from the system, compensator, or
model, see [9]. Still, in some cases one may prefer a realizable compensator. The results from [10] allow
deciding directly from the transfer function of the compensator whether it is realizable or not. An interesting
question is whether this can be answered directly from transfer functions of the system and model without
making any computations.
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23. Pommaret, J. F. Géométrie differentielle algébrique et théorie du contrôle. CR Acad. Sci. Paris, 1986, 302, 547–550.
24. Rudolph, J. Viewing input-output system equivalence from differential algebra. JMSEC, 1994, 4(3), 353–383.
25. Yamamoto, Y. Simple model matching control of nonlinear discrete time systems. In International Conference on Control,

Automation and Systems, 14–17 October 2008, Seoul. IEEE, 2008, 2325–2329.
26. Zheng, Y. and Cao, L. Transfer function description for nonlinear systems. Journal East China Normal University, 1995, 2,

15–26.
27. Zheng, Y., Willems, J. C., and Zhang, C. A polynomial approach to nonlinear system controllability. IEEE Trans. Autom.

Control, 2001, 46(11), 1782–1788.

Polünoommeetod mittelineaarsete juhtimissüsteemide mudeliga sobitamise
ülesande lahendamisel

Juri Belikov, Miroslav Halás, Ülle Kotta ja Claude H. Moog

On uuritud mudeliga sobitamise ülesannet mittelineaarsete süsteemide jaoks, mis on kirjeldatud kõrgemat
järku diferentsiaalvõrranditega, mis seovad süsteemi sisendeid ja väljundeid. Pole eeldatud võrrandi reali-
seeritavust olekukujul ja on otsitud lahendit ainult otseside kujul. Probleemipüstitus ja lahendus põhine-
vad hiljuti evitatud üldistatud ülekandefunktsiooni mõistel mittelineaarsete juhtimissüsteemide jaoks. On
nõutud, et kompenseeritud süsteemi ja etteantud mudeli ülekandefunktsioonid oleksid võrdsed, samuti nagu
lineaarsel juhul. Aga kuna mittelineaarsel juhul ei töötata ülekandefunktsioonil põhinevas formalismis
süsteemi võrranditega, vaid neile vastavate diferentsiaalsete üks-vormidega, on kompensaatori olemasolu
kitsendatud kompensaatorile vastava üks-vormi integreeritavuse tingimustega. Ülesande lahenduvusele on
leitud mittekonstruktiivsed tarvilikud ja piisavad tingimused. Teine teoreem annab rea (konstruktiivseid)
tingimusi, mille korral on üks-vorm integreeruv. Teatud juhtudel võimaldab Eukleidese algoritmi kasuta-
misel leitud lisaeelduste sissetoomine probleemi lahendada.


