

Proceedings of the Estonian Academy of Sciences, 2017, **66**, 1, 10–17

https://doi.org/10.3176/proc.2017.1.03 Available online at www.eap.ee/proceedings **CHEMISTRY**

Potassium iodide catalysis in the alkylation of protected hydrazines

Anton Mastitski*, Aleksander Abramov, Anneli Kruve, and Jaak Järv

Institute of Chemistry, University of Tartu, Ravila14a, Tartu, Estonia

Received 3 May 2016, revised 7 July 2016, accepted 8 July 2016, available online 27 December 2016

© 2016 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. Potassium iodide catalysis was applied for the synthesis of protected benzylhydrazines and hydrazinoacetic acid esters by the alkylation of protected hydrazines. Benzylic halogenides and halogenoacetic acid esters were employed as alkylating agents. In these syntheses the reactive alkyl iodide molecules were generated in situ from less reactive halogenides, which significantly accelerated the alkylation reaction. The effectiveness of potassium iodide catalysis was proved by experiments performed under the same conditions in the absence of this salt.

Key words: alkylation, aza-tyrosine, aza-tryptophan precursors, aza-amino acid precursors, hydrazine derivatives, monoprotected hydrazine alkylation, protecting groups, bromination, potassium iodide catalysis.

Abbreviations

ACN – acetonitrile Asp – aspartic acid

ATR - attenuated total reflectance

Bn - benzyl

Boc – *tert*-butyloxycarbonyl

Bz – benzoyl

 $\label{eq:DiPEA} \begin{aligned} &\text{DiPEA} - \textit{N,N'}\text{-} \\ &\text{diisopropylethylamine} \\ &\text{DMAP} - 4\text{-} \\ &\text{dimethylaminopyridine} \end{aligned}$

DMSO - dimethyl sulphoxide

 $EA-ethyl\ acetate$

Fmoc – 9-fluorenylmethoxycarbonyl

IR - infrared

Lit. m.p. – melting point from the literature

LRMS – low resolution mass spectra

NBS – N-bromosuccinimide

NMR - nuclear magnetic resonance

 $PE-petroleum\ ether$

PG – protecting group

Phe-phenylalaline

Pro - proline

tBu – tertiary butyl (tert-butyl)

 $TLC-thin\ layer\ chromatography$

TMS – tetramethylsilane

Tyr – tyrosine

Z – carboxybenzyl

INTRODUCTION

Replacement of natural amino acids with their azaanalogues in peptides yields aza-peptides, a class of peptide-like compounds where the α -C atom of an amino

* Corresponding author, anton.mastitski@ut.ee

acid is replaced with a nitrogen atom. These peptide analogues have increased biostability [1–4] and therefore these compounds are promising drug candidates serving as inhibitors of HIV-1 [5] and hepatite C protease [6]. However, α-aza-amino acids themselves are not stable compounds and cannot be prepared and isolated due to their spontaneous decarboxylation [7]. Therefore aza-

amino acids are included into peptides by using protected alkylhydrazines as precursors of α -aza-amino acids.

The most straightforward way for the synthesis of aza-amino acid precursors is direct alkylation of protected hydrazines with alkylhalogenides [8–12]. Compared to the more widely applied reductive alkylation approach, direct alkylation reduces the number of reaction steps and allows omitting the reduction step of hydrazone, formed in the condensation step of a carbonyl compound and hydrazine [8]. This reduction step is technically complicated, especially if a Pd/C catalyst is used at elevated hydrogen pressure [1]. On the other hand, in the case of a direct alkylation reaction, the formation of polyalkylated products should be considered [13]. However, the formation of these side products could be suppressed by using excess of hydrazine and applying an appropriate base and solvent [8,9].

The direct hydrazine alkylation reaction has been used for the preparation of various aza-amino acid precursors [8–12], including the alkylation of Fmoc-NHNH₂ by solid phase immobilized 2-bromoacetic acid [14] and on-resin synthesis of aza-Phe residue [15]. Alkylation of di-protected hydrazines by 1,3-dibromo-propane was applied for the preparation of aza-Pro precursors carrying orthogonal protecting groups [11,16]. Recently, an effective alkylation of conjugated hydrazone anions by different alkylhalogenides was reported [17–20]. Also, an effective N-alkylation of aza-sulphuryl peptide was reported [21].

Our previous work [9] about synthesis of azaphenylalanine, aza-tyrosine, and aza-tryptophan precursors, where alkylation of monoprotected hydrazines was used, revealed that application of alkyl chlorides resulted in a very low yield of monoalkylated hydrazine, while higher yields were obtained in the case of alkyl bromides and especially alkyl iodides [9]. However, practical application of these reactions is often complicated, as alkyl iodides are not readily available and often tend to decompose during storage and purification.

In this study we report the possibility of hydrazine alkylation by generating alkyl iodides from less reactive alkylhalogenides in situ in the presence of catalytic amounts of inorganic iodides such as NaI and KI. Although the iodide catalysed alkylation reaction is known and effectively applied for the synthesis of different organic compounds [22–24], no attention has so far been paid to KI catalysed alkylation of hydrazine and its derivatives. In the reported study we filled this gap.

RESULTS AND DISCUSSION

In this study we observed that a catalytic amount of KI (0.1 eq) promoted the alkylation of different protected hydrazines and provided a possibility of using different alkyl halogenides of rather low reactivity for this reaction. As a result of this catalysis, it was possible to significantly improve the preparation of the precursors for aza-tyrozine, aza-Asp, and aza-phenylalanine.

Firstly, we used the catalytic reaction for the preparation of aza-tyrosine precursor, proceeding from *p*-cresol, which was *O*-protected with a Boc protecting group and thereafter brominated at the methyl group by using the radical halogenation reaction (Scheme 1). The obtained bromide was thereafter used for the bromination of various hydrazines. Yields of these reactions were 49–59% after 5-hour long refluxing (Scheme 1).

Encouraged by the described results, we decided to apply the above-mentioned KI catalysis for the preparation of other protected alkylhydrazines. More specifically, we used benzyl bromide, benzyl chloride, 4-methoxybenzyl chloride, *tert*-butyl bromoacetate, methyl bromoacetate, and ethyl chloroacetate for the alkylation of Fmoc-, Boc-, and Z-protected hydrazines.

Scheme 1. Preparation of precursors of aza-Tyr(Boc) from *p*-cresol.

In the case of benzylation of hydrazines (Scheme 2) the application of KI catalysis allowed us to react protected hydrazines effectively even with compounds that have a rather low electrophilicity, and nearly equal yields were obtained (Table 1) when Bn bromide and benzyl chloride were used as the alkylating reagents. At the same time the alkylation of protected hydrazines with benzyl chloride in the absence of KI gave only traces of the monoalkylated product during 6-hour refluxing and 21–55% of the desired product after 24 hours (Table 1).

In the reactions with 4-methoxybenzyl chloride (Scheme 2) protected 4-methoxybenzyl hydrazines were obtained in moderate to good yields after 6-hour long reflux, while attempts to use this reaction in the absence of KI gave the products in 13–27% yield after 24-hour long refluxing (Table 1).

In the reactions of protected hydrazines and halogenoacetic acid esters the respective halogenides and protected hydrazines were taken in 1:1 ratio, and 1.5 eq of 2,4,6-trimethylpyridine (in combination with Fmoc-NHNH₂) or DiPEA (in combination with Boc-NHNH₂ or Z-NHNH₂) was used as the base. The yields of monoalkylated products (12)–(18) were 54–88% after 24-hour long refluxing (Scheme 3).

We tested alkylation of protected hydrazines with ethyl chloroacetate in the absence of KI and obtained monoalkyl products with 15–20% yield after 24 hours of refluxing. These experiments together with the results of the alkylation reactions with benzyl chloride and 4-methoxybenzyl chloride clearly show the effectiveness of KI catalysis.

 ${\it d.}$ 0.1 M ACN sol-n, 1.5 eq of 2,4,6-trimethylpyridine (for Fmoc) or DiPEA (for Boc or Z), 0.1 eq of KI, 1 eq of halogenide, reflux.

Scheme 2. Potassium iodide catalysed benzylation of protected hydrazines.

Table 1	l. Benzylation of	f protected hydrazines.	$PG-NHNH_2$ 3	eq; solvent ACN; reflux
---------	-------------------	-------------------------	---------------	-------------------------

PG	Reaction time, h	Alkylating reagent (1 eq)	Base (1.5 eq)	KI, eq	Yield of monoalkylated hydrazine, %
Fmoc	5	Bn-Br	2,4,6-trimethylpyridine	0.1	68
Boc	5	Bn-Br	2,4,6-trimethylpyridine	0.1	71
Boc	5	Bn-Cl	2,4,6-trimethylpyridine	0.1	77
Fmoc	6	Bn-Cl	2,4,6-trimethylpyridine	0.1	49
Z	6	Bn-Cl	DiPEA	0.1	53
Boc	6	Bn-Cl	DiPEA	0.1	65
Boc	24	Bn-Cl	DiPEA	0	55
Fmoc	24	Bn-Cl	2,4,6-trimethylpyridine	0	22
Z	24	Bn-Cl	DiPEA	0	21
Boc	6	4-(OCH ₃)-Bn-Cl	DiPEA	0.1	61
Fmoc	6	4-(OCH ₃)-Bn-Cl	2,4,6-trimethylpyridine	0.1	46
Boc	24	4-(OCH ₃)-Bn-Cl	DiPEA	0	27
Fmoc	24	4-(OCH ₃)-Bn-Cl	2,4,6-trimethylpyridine	0	13

e. 0.1 M ACN sol-n, 1.5 eq of 2,4,6-trimethylpyridine (for Fmoc) or DiPEA (for Boc or Z), 0.1 eq of KI, 1 eq of halogenide, reflux.

Scheme 3. Potassium iodide catalysed alkylation of protected hydrazines with halogenoacetic acid esters.

EXPERIMENTAL

General. All solvents and reagents were purchased from Merck, Sigma-Aldrich, or Lach-Ner. NMR spectra were measured on 200 MHz and 700 MHz instruments (Bruker, Germany) in DMSO-d6 or CDCl₃ as the solvent and using TMS as the internal reference. The LRMS were obtained on an Agilent Series 1100 LC/MSD Trap XCT (Agilent Technologies, Santa Clara, USA) spectrometer using acetonitrile as the solvent. The IR spectra were determined by using the ATR measuring technique on a Perkin-Elmer Spectrum BX spectrometer. The structure of the synthesized compounds was verified by NMR and IR spectroscopy. Purity was checked by means of NMR and TLC. Additional mass spectra analysis was performed. All the yields are given in comparison with the theoretical yield and are calculated proceeding from the mass of the obtained product. All the melting points are uncorrected.

9-H-Fluorenyl-9-methyl carbazate was prepared according to the literature method [1] with slight modifications. Briefly, the slurry of Fmoc-NHNH₂ was cooled on ice bath before filtration, ice cold water and toluene were used for washing the product, followed by air drying and drying in vacuum. Fmoc-hydrazine was obtained in 99% yield. M.p. 172 °C (lit. m.p. 171 °C [25]). NMR (200 MHz; DMSO-d₆): 1 H δ = 3.8 (s, 2H, NH₂), 4.3 (t, J = 7 Hz, 1H, CH (Fmoc)), 4.5 (d, J = 6.8 Hz, 2H, CH₂), 6.1 (br s, 1H, NH), 7.3–7.9 (m, 8H, Ar(H)). 13 C δ = 47.2, 66.3, 120.6, 125.7, 127.6, 128.1, 141.2, 144.4, 158.7.

Benzyl carbazate was prepared according to the previously reported procedure [9]. NMR (200 MHz; CDCl₃): 1 H δ = 3.87 (br s, 2H, NH₂), 5.15 (s, 2H, CH₂), 6.72 (br s, 1H, NH), 7.37 (s, 5H, Ar(H)). 13 C δ = 67.2,

128.2, 128.3, 128.5, 136.2, 158.7. IR (cm⁻¹): 3322.2, 3031.6, 1710.7, 1632.9, 1496.4, 1454.1, 1344.6, 1266.7, 1214.5, 1055.6, 1027.9, 913.1, 845.0, 736.0, 695.3. M.p. 64–66 °C (lit. m.p. 69–70 °C [26]).

General procedure for the preparation of *tert*-butyl 4-methylphenyl carbonate (1): 1 eq of *p*-cresol was dissolved in chloroform followed by the addition of 1.05 eq of Boc₂O and 0.05 eq of DMAP. The reaction mixture was stirred at room temperature for 30 min; diluted with EA; washed with dilute KHSO₄ solution, saturated NaHCO₃ solution, water, and saturated NaCl solution; and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, giving a transparent oil that crystallized at room temperature. Yield: 98%.

NMR (200 MHz; CDCl₃): ¹H δ = 1.49 (s, 9H, 3 × CH₃), 2.25 (s, 3H, CH₃), 6.98–7.10 (m, 4H, Ar(H)). ¹³C δ = 20.4, 27.3, 82.5, 120.7, 129.5, 134.8, 148.9, 151.8. IR (cm⁻¹) = 3034.5, 2981.7, 2933.1, 1751.2, 1508.4, 1453.8, 1366.8, 1253.5, 1140.2, 820.5. M.p. = 47–50 °C (lit. m.p. 48–52 °C [27]). Rf (EA/PE 1 : 7) = 0.77.

tert-Butyloxycarbonyloxy-4-(bromomethyl) benzene (2) was prepared according to the following procedure: 1 eq of t-butyl 4-methylphenyl carbonate (1) (0.6 g, 0.00285 mol) was dissolved in 10 mL of dry CCl₄ (distilled from P₂O₅), followed by the addition of 1.05 eq of NBS (539 mg) and 0.016 eq (10 mg) of benzoyl peroxide. The resulting mixture was refluxed for 2 h and cooled to room temperature. The precipitated succinimide was filtered out and washed with 2 mL of dry CCl₄. The filtrate was evaporated to dryness and the obtained white solid was used in the following step without further purification. Yield: 99% [28].

NMR (200 MHz; CDCl₃): ¹H δ = 1.56 (s, 9H, 3 × CH₃), 4.48 (s, 2H, CH₂Br), 7.17 (d, 2H, J = 6.6 Hz, Ar(H)), 7.40 (d, 2H, J = 6.6 Hz, Ar(H)). ¹³C δ = 27.7, 32.6,

83.7, 121.6, 127.8, 130.2, 135.3, 151.1. IR (cm⁻¹) = 3030.0, 2986.0, 1746.9, 1508.6, 1371.2, 1275.8, 1258.0, 1220.2, 1145.2, 895.9, 835.9. Rf (EA/PE 1 : 7) = 0.68.

General procedure for the preparation of compounds (3)–(11): 3 eq of N-protected hydrazine was dissolved in ACN (0.1 M solution), 1.5 eq of 2,4,6-trimethylpyridine (for the alkylation of Fmoc-NHNH₂ and Bz-NHNH₂) or DiPEA (for BocNHNH₂ or Z-NHNH₂) and 0.1 eq of KI were added. The reaction mixture was heated to reflux, solution of 1 eq of alkylhalogenide in ACN (approximately 0.1 g of bromide in 1 mL of ACN) was added dropwise and the reaction mixture was refluxed for 5 h. ACN was evaporated under reduced pressure, the residue was dissolved in EA and washed with 1 M NaHCO₃, $2 \times H_2O_3$ and brine. The water phase was extracted twice with EA, the combined organic solutions were washed with brine, dried over anhydrous Na₂SO₄, and concentrated using a rotatory evaporator. The crude product was purified on silica gel using an EA/PE 1:2 or 1:1 mixture as the eluent.

N-Fluorenylmethyloxycarbonyl-*N'*-(4-tert-butyloxycarbonyloxy)benzyl hydrazine (3): NMR (200 MHz; CDCl₃): 1 H δ = 1.56 (s, 9H, 3 × CH₃), 3.65 (br s, 1H, NH), 3.96 (s, 2H, CH₂), 4.20 (t, 1H, J = 6.4 Hz, CH(Fmoc)), 4.44 (d, 2H, J = 6.8 Hz; CH₂(Fmoc)), 6.36 (b rs, 1H, NH), 7.25 (d, 2H, J = 8.4 Hz, Ar(H)), 7.10–7.54 (m, 6H, Ar(H)), 7.56 (d, 2H, J = 7.2 Hz, Ar(H)), 7.75 (d, 2H, J = 6.8 Hz, Ar(H)). 13 C δ = 27.7, 47.3, 55.0, 67.0, 83.5, 120.0, 121.3, 125.0, 127.1, 127.8, 129.9, 135.0, 141.4, 143.7, 150.6, 151.9, 157.2. IR (cm⁻¹) = 3355.0, 2985.8, 1747.1, 1694.5, 1510.1, 1449.7, 1472.0, 1267.6, 1259.5, 1144.9, 739.1. LRMS: calculated m/z for C₂₇H₂₈N₂O₅Na [M + Na]⁺: 483.2, found [M + Na]⁺ m/z: 483.2. M.p. = 115–120 °C. Rf (EA/PE 1 : 2) = 0.29. Yield: 57%.

N-tert-Butyloxycarbonyl-*N'*-(4-tert-butyloxycarbonyloxy)benzyl hydrazine (4): NMR (700 MHz; CDCl₃): 1 H δ = 1.46 (s, 9H, 3 × CH₃), 1.56 (s, 9H, 3 × CH₃), 3.97 (s, 2H, CH₂), 4.22 (br s, 1H, NH), 6.08 (br s, 1H, NH), 7.13 (d, 2H, J = 7 Hz, Ar(H)), 7.35 (d, 2H, J = 8.4 Hz, Ar(H)). 13 C δ = 27.8, 28.6, 55.0, 80.5, 83.5, 121.3, 130.0, 135.0, 150.4, 151.9, 156.7. IR (cm⁻¹) = 3286.0, 2980.3, 1754.3, 1715.3, 1509.4, 1369.4, 1276.1, 1220.4, 1142.1, 1017.0, 896.2, 781.9. LRMS: calculated m/z for C₁₇H₂₆N₂O₅Na [M + Na]⁺: 361.2, found [M + Na]⁺ m/z: 361.6. M.p. = 89–92 °C. Rf (EA/PE 1 : 2) = 0.48. Yield: 56%.

N-Benzyloxycarbonyl-*N'*-(4-tert-butyloxy-carbonyloxy)benzyl hydrazine (5): NMR (700 MHz; CDCl₃): ${}^{1}\text{H}$ $\delta = 1.55$ (s, 9H, 3 × CH₃), 3.99 (s, 2H, CH₂), 4.27 (br s, 1H, NH), 5.13 (s, 2H, CH₂(Z)), 6.38 (br s,

1H, NH), 7.11 (d, 2H, J= 7.7 Hz, Ar(H)), 7.31–7.35 (m, 7H, Ar(H)). 13 C δ = 27.7, 54.9, 67.1, 83.6, 121.3, 128.2, 128.3,128.6, 129.9, 135.0, 136.0, 150.5, 151.9, 157.2. IR (cm⁻¹) = 3273.7, 2981.7, 1752.0, 1723.0, 1509.7, 1455.2, 1370.6, 1274.7, 1222.4, 1146.3, 1027.3, 894.0, 781.9. LRMS: calculated m/z for $C_{20}H_{24}N_2O_5Na$ [M + Na]⁺: 395.2, found [M + Na]⁺ m/z: 395.3. M.p. = 75–79 °C. Rf (EA/PE 1 : 2) = 0.45. Yield: 59%.

N-Benzoyl-*N'*-4-(*tert*-butyloxycarbonyloxy)benzyl hydrazine (6): NMR (700 MHz; CDCl₃): 1 H δ = 1.56 (s, 9H, 3 × CH₃), 4.03 (s, 2H, CH₂), 5.16 (br s, 1H, NH), 7.12 (d, 2H, J= 8.4 Hz, Ar(H)), 7.36–7.40 (m, 4H, Ar(H)), 7.49 (t, 1H, J= 7 Hz, Ar(H)), 7.70 (t, 2H, J= 7 Hz, Ar(H)), 8.03 (s, 1H, NH). 13 C δ = 27.7, 55.2, 83.6, 121.3, 126.9, 128.6, 130.1, 131.9, 132.7, 135.2, 150.5, 151.9, 167.5. IR (cm⁻¹) = 3277.9, 2980.9, 1748.2, 1665.0, 1532.9, 1468.9, 1370.0, 1275.4, 1221.9, 1146.7, 891.0, 824.3, 689.8. LRMS: calculated m/z for C₁₉H₂₂N₂O₄Na [M + Na]⁺: 365.2, found [M + Na]⁺ m/z: 365.3. M.p. = 125–128 °C. Rf (EA/PE 1 : 1) = 0.37. Yield: 49%.

N-Fluorenylmethyloxycarbonyl-*N'*-benzyl hydrazine (7): NMR (700 MHz; CDCl₃): 1 H δ = 3.84 (br s, 1H, NH), 3.89 (s, 2H, CH₂), 4.21 (t, 1H, J = 6.4 Hz, CH (Fmoc)), 4.44 (d, 2H, J = 6.8 Hz, CH₂(Fmoc)), 6.35 (br s, 1H, NH), 7.27–7.32 (m, 7H, Ar(H)), 7.39 (t, 2H, J = 7.7 Hz, Ar(H)), 7.54 (s, 2H, Ar(H)), 7.75 (d, 2H, J = 7 Hz, Ar(H)). 13 C δ = 47.2, 55.6, 66.9, 120.0, 125.0, 127.1, 127.6, 127.8, 128.5, 129.0, 137.3, 141.3, 143.7, 157.1. IR (cm⁻¹) = 3316.5, 1685.6, 1500.4, 1271.9, 1106.1, 735.8. LRMS: calculated m/z for C₂₂H₂₁N₂O₂[M + H]⁺: 345.2, found [M + H]⁺ m/z: 345.3. M.p. = 138–140 °C (lit. m.p. = 143–145 °C [1]). Rf (EA/PE 1 : 2) = 0.34. Yield: 68%.

N-Benzyloxycarbonyl-*N*'-benzyl hydrazine (8): NMR (200 MHz; CDCl₃): 1 H δ = 3.92 (s, 2H, CH₂), 4.22 (br s, 1H, NH), 5.08 (s, 2H, CH₂(Z)), 6.73 (br s, 1H, NH), 7.26 (d, 10H, Ar(H)). 13 C δ = 55.6, 67.0, 127.5, 128.1, 128.2, 128.4, 128.5, 128.9, 136.1, 137.4, 157.2. IR (cm⁻¹) = 3257.0, 1719.9, 1513.9, 1453.3, 1279.0, 1229.2, 1145.1, 1023.9, 743.9, 693.3. LRMS: calculated m/z for C₁₅H₁₇N₂O₂ [M + H]⁺: 257.1, found [M + H]⁺ m/z: 257.1. Rf (EA/PE 1 : 2) = 0.36. Yield: 53% [29].

N-tert-Butyloxycarbonyl-*N'*-benzyl hydrazine (9): NMR (700 MHz; CDCl₃): 1 H δ = 1.46 (s, 9H, 3 × CH₃), 3.97 (s, 3H, CH₂ + NH), 6.30 (br s, 1H, NH), 7.25–7.38 (m, 5H, Ar(H)). 13 C δ = 28.4, 55.8, 80.5, 127.5, 128.4, 129.0, 137.7, 156.7. IR (cm⁻¹) = 3306.3, 3030.4, 2979.2, 1704.1, 1453.8, 1392.0, 1367.0, 1278.6, 1252.1, 1151.8, 1020.0, 740.1. LRMS: calculated *m/z* for C₁₂H₁₈N₂O₂Na [M + Na]⁺: 245.1, found [M + Na]⁺ *m/z*: 245.2. Rf (EA/PE 1 : 1) = 0.56. Yield: 77% [30].

N-Fluorenylmethyloxycarbonyl-*N*'-(4-methoxy)benzyl hydrazine (10): NMR (700 MHz; CDCl₃): 1 H δ = 3.78 (s, 3H, OCH₃), 3.95 (s, 2H, CH₂), 4.21 (t, 2H, J = 6.5 Hz, CH(Fmoc) + NH), 4.45 (d, 2H, J = 6.8 Hz, CH₂(Fmoc)), 6.32 (br s, 1H, NH), 6.85 (d, 2H, J = 7 Hz, Ar(H)), 7.24 (d, 2H, J = 5.3 Hz, Ar(H)), 7.30 (t, 2H, J = 7 Hz, Ar(H)), 7.39 (t, 2H, J = 7 Hz, Ar(H)), 7.55 (d, 2H, J = 5 Hz, Ar(H)), 7.75 (d, 2H, J = 7.7 Hz, Ar(H)). 13 C δ = 47.2, 55.0, 55.3, 66.9, 113.9, 120.0, 121.5, 125.0, 127.1, 127.8, 130.3, 141.3, 143.7, 157.2, 159.1. IR (cm⁻¹) = 3321.3, 3018.3, 2948.4, 1687.6, 1612.2, 1512.6, 1451.7, 1276.9, 1245.9, 1159.4, 1034.5, 756.1, 736.7. LRMS: calculated m/z for C₂₃H₂₃N₂O₃[M + H]⁺: 375.2, found [M + H]⁺ m/z: 375.3. Rf (EA/PE 1 : 2) = 0.17. Yield: 46%.

N-tert-Butyloxycarbonyl-*N'*-(4-methoxy)benzyl hydrazine (11): NMR (700 MHz; CDCl₃): 1 H δ = 1.46 (s, 9H, 3 × CH₃), 3.79 (s, 3H, OCH₃), 3.92 (s, 3H, CH₂ + NH), 6.21 (br s, 1H, NH), 6.86 (d, 2H, J = 9.1 Hz, Ar(H)), 7.26 (d, 2H, J = 8.4 Hz, Ar(H)). 13 C δ = 28.4, 55.2, 55.3, 80.4, 113.9, 129.6, 130.3, 156.7, 159.0. IR (cm⁻¹) = 3312.2, 2977.0, 1704.4, 1612.7, 1512.4, 1455.7, 1366.6, 1278.2, 1245.9, 1150.8, 1034.1, 806.5. LRMS: calculated m/z for C₂₆H₄₀N₄O₆[2M]⁺: 504.3, found [2M]⁺ m/z: 504.9. Rf (EA/PE 1 : 2) = 0.25. Yield: 61% [5].

General procedure for the preparation of compounds (12)–(18): 1 eq of N-protected hydrazine was dissolved in ACN (0.1 M solution), 1.5 eq of 2,4,6-trimethylpyridine (for the alkylation of Fmoc-NHNH₂) or DiPEA (for BocNHNH₂ or Z-NHNH₂) and 0.1 eq of KI were added. The reaction mixture was heated to reflux. Solution of 1 eq of alkylbromide in ACN (approximately 0.1 g of bromide in 1 mL of ACN) was added dropwise and the reaction mixture was refluxed overnight. ACN was evaporated under reduced pressure, the residue was dissolved in EA, washed with 1 M NaHCO₃, $2 \times H_2O_3$ and brine. The water phase was extracted twice with EA, combined organic solutions were washed with brine, dried over anhydrous Na₂SO₄, and concentrated using a rotatory evaporator. The crude product was purified on silica gel using an EA/PE 1:2 or 1:1 mixture as the eluent.

N-Fluorenylmethyloxycarbonyl-hydrazinoacetic acid *tert*-butyl ester (12): NMR (200 MHz; CDCl₃): 1 H δ = 1.46 (s, 9H, 3 × CH₃), 3.52 (s, 2H, CH₂), 4.19 (t, 1H, J = 6.8 Hz, CH (Fmoc)), 4.29 (br s, 1H, NH), 4.41 (d, 2H, J = 7 Hz, CH₂ (Fmoc)), 6.97 (br s, 1H, NH), 7.24–7.40 (m, 4H, Ar(H)), 7.56 (d, 2H, J = 7.2 Hz, Ar(H)), 7.72 (d, 2H, J = 7.2 Hz, Ar(H)). 13 C δ = 28.1, 47.2, 53.3, 67.1, 81.9, 120.0, 125.0, 127.0, 127.7, 141.3, 143.7,

156.8, 170.5. IR (cm⁻¹) = 3359.1, 2979.5, 1724.9, 1699.4, 1520.0, 1476.6, 1450.5, 1392.1, 1367.1, 1259.6, 1220.0, 1151.2, 1033.1, 755.9, 737.4. LRMS: calculated m/z for $C_{21}H_{24}N_2O_4Na$ [M + Na]⁺: 391.2, found [M + Na]⁺ m/z: 391.3. M.p. = 69–72 °C. Rf (EA/PE 1:1) = 0.59. Yield: 88% [1].

N-tert-Butylyloxycarbonyl-hydrazinoacetic acid methyl ester (13): NMR (200 MHz; CDCl₃): 1 H δ = 1.45 (s, 9H, 3 × CH₃), 3.67 (s, 2H, CH₂), 3.74 (s, 3H, OCH₃), 4.34 (br s, 1H, NH), 6.68 (br s, 1H, NH). 13 C δ = 28.3, 51.8, 57.1, 80.6, 156.3, 170.3. IR (cm⁻¹) = 3409.1, 3308.6, 2979.6, 1755.2, 1703.7, 1480.6, 1368.1, 1278.7, 1250.8, 1150.1, 1021.7. LRMS: calculated m/z for $C_8H_{16}N_2O_4Na$ [M + Na]⁺: 227.1, found [M + Na]⁺ m/z: 227.0. Rf (EA) = 0.61. Yield: 57% [31].

N-tert-Butylyloxycarbonyl-hydrazinoacetic acid *tert*-butyl ester (14): NMR (200 MHz; CDCl₃): 1 H δ = 1.38 (s, 9H, 3 × CH₃), 1.40 (s, 9H, 3 × CH₃), 3.47 (s, 2H, CH₂), 4.19 (br s, 1H, NH), 6.62 (br s, 1H, NH). 13 C δ = 28.1, 28.4, 53.5, 80.3, 81.5, 156.3, 170.4. IR (cm⁻¹) = 3369.5, 2979.7, 2932.2, 1728.9, 1708.7, 1461.3, 1392.4, 1365.7, 1244.1, 1149.4, 754.0. LRMS: calculated *m/z* for C₁₁H₂₂N₂O₄Na [M + Na]⁺: 269.2, found [M + Na]⁺ *m/z*: 269.1. Rf (EA/PE 1 : 1) = 0.55. Yield: 54% [32].

N-Benzyloxycarbonyl-hydrazinoacetic acid *tert*-butyl ester (15): NMR (700 MHz; CDCl₃): 1 H δ = 1.46 (s, 9H, 3 × CH₃), 3.55 (s, 2H, CH₂), 4.21 (br s, 1H, NH), 5.14 (s, 2H, CH₂(Z)), 6.79 (br s, 1H, NH), 7.31–7.36 (m, 5H, Ar(H)). 13 C δ = 28.1, 53.4, 67.1, 82.0, 128.2, 128.3, 128.6, 136.0, 156.7, 170.6. IR (cm⁻¹) = 3387.1, 3247.6, 2978.0, 2938.6, 1743.8, 1724.4, 1522.7, 1450.2, 1366.7, 1225.0, 1159.0, 1050.6, 730.3. LRMS: calculated *m/z* for C₁₄H₂₀N₂O₄Na [M+Na]⁺: 303.1, found [M + Na]⁺ *m/z*: 303.3. M.p. = 55–57 °C (lit. m.p. = 61–62 °C [33]). Rf (EA/PE 1 : 1) = 0.59. Yield: 60% [11,33].

N-Fluorenylmethyloxycarbonyl-hydrazinoacetic acid ethyl ester (16): NMR (700 MHz; CDCl₃): 1 H δ = 1.29 (t, J = 7 Hz, 3H, CH₃), 3.64 (s, 2H, CH₂), 4.22 (q, J = 7 Hz, 4H, CH₂ + CH (Fmoc) + NH), 4.44 (d, J = 5.6 Hz, 2H, CH₂ (Fmoc)), 6.72 (br s, 1H, NH), 7.31 (d, 2H, J = 7 Hz, Ar(H)), 7.40 (t, 2H, J = 7.4 Hz, Ar(H)), 7.57 (d, 2H, J = 7 Hz, Ar(H)), 7.76 (t, 2H, J = 7 Hz, Ar(H)). 13 C δ = 14.2, 47.1, 52.7, 61.2, 67.1, 120.0, 125.0, 127.1, 127.8, 141.3, 143.7, 156.7, 171.3. IR (cm⁻¹) = 3334.9, 3229.2, 3071.0, 2924.6, 2854.0, 1741.2, 1707.9, 1479.4, 1449.2, 1375.4, 1252.7, 1200.2, 1156.0, 1024.9, 737.7. LRMS: calculated m/z for $C_{38}H_{41}N_4O_8$ [2M + H] $^{+}$: 681.3, found [2M + H] $^{+}$ m/z: 681.3. Rf (EA/PE 2:1) = 0.54. Yield: 40% [34].

N-tert-Butylyloxycarbonyl-hydrazinoacetic acid ethyl ester (17): NMR (700 MHz; CDCl₃): 1 H δ = 1.28 (t, 3H, J = 7 Hz, CH₃), 1.46 (s, 9H, 3 × CH₃), 3.65 (s, 2H, CH₂), 4.14 (br s, 1H, NH), 4.21 (q, 2H, J = 7 Hz, CH₂), 6.49 (br s, 1H, NH). 13 C δ = 14.2, 28.3, 52.9, 61.0, 80.6, 156.2, 171.2. IR (cm⁻¹) = 3320.5, 2979.7, 2933.1, 1735.0, 1715.3, 1456.7, 1392.6, 1367.7, 1251.8, 1203.2, 1153.7, 1022.1. LRMS: calculated m/z for C₉H₁₈N₂O₄Na [M + Na]⁺: 241.1, found [M + Na]⁺ m/z: 241.1. M.p. = - (transparent oil). (lit. m.p. = 22–26 °C [35].) Rf (EA/PE 2 : 1) = 0.57. Yield: 50% [35].

N-Benzyloxycarbonyl-hydrazinoacetic acid ethyl ester (18): NMR (700 MHz; CDCl₃): 1 H δ = 1.28 (t, 3H, J = 7 Hz, CH₃), 3.66 (s, 2H, CH₂), 4.19 (q, 3H, J = 7 Hz, CH₂ + NH), 5.14 (s, 2H, CH₂(Z)), 6.76 (br s, 1H, NH), 7.32–7.36 (m, 5H, Ar(H)). 13 C δ = 14.2, 52.8, 61.1, 67.2, 128.2, 128.3, 128.6, 136.0, 156.7, 171.2. IR (cm⁻¹) = 3326.1, 3253.5, 3034.5, 2977.7, 2925.6, 1739.5, 1694.0, 1519.4, 1478.3, 1378.8, 1262.8, 1200.7, 1160.4, 1049.8, 1026.0, 736.3. LRMS: calculated m/z for C₁₂H₁₆N₂O₄Na [M + Na]⁺ : 275.1, found [M + Na]⁺ m/z: 275.2. M.p. = 91–94 °C (lit. m.p. = 94–95 °C [35]). Rf (EA/PE 2 : 1) = 0.55. Yield: 44% [35].

CONCLUSIONS

Potassium iodide catalysis was applied for the alkylation of protected hydrazines. This allowed incorporating less reactive halogenides and performing the alkylation remarkably faster and more effectively than without KI. By using this approach six new Fmoc-, Boc-, and Z-protected hydrazines of interest as precursors for insertion of aza-Tyr and aza-Asp into aza-peptides were prepared.

ACKNOWLEDGEMENTS

This work was funded by the Estonian Ministry of Education and Research (Grant IUT20-15). The publication costs of this article were covered by the Estonian Academy of Sciences.

REFERENCES

- Boeglin, D. and Lubell, W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with Fmoc chemistry and aza-amino acids with heteroatomic side chains. *J. Comb. Chem.*, 2005, 7, 864–878.
- 2. Quibell, M., Turnell, W. G., and Johnson, T. Synthesis of azapeptides by the Fmoc/*tert*-butyl/polyamide technique. *J. Chem. Soc., Perkin Trans. 1*, 1993, 2843–2849.

- Zega, A. Azapeptides as pharmacological agents. Curr. Med. Chem., 2005, 12, 589–597.
- Proulx, C., Sabatino, D., Hopewell, R., Spiegel, J., Garcia Ramos, Y., and Lubell, W. D. Azapeptides and their therapeutic potential. *Future Med. Chem.*, 2011, 3, 1139–1164.
- Fässler, A., Bold, G., Capraro, H.-G., Cozens, R., Mestan, J., Poncioni, B., et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. *J. Med. Chem.*, 1996, 39, 3203–3216.
- Venkatraman, S., Wu, W., Shih, N.-Y., and Njoroge, F. G. Potent aza-peptide derived inhibitors of HCV NS3 protease. *Bioorg. Med. Chem. Lett.*, 2009, 19, 4760– 4763.
- Staal, E. and Faurholt, C. Carbamates. IV. The carbamate of hydrazine. *Dansk Tidsskrift for Farmaci*, 1951, 25, 1–12.
- 8. Mastitski, A., Kisseljova, K., and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)₂ precursor via hydrazine alkylation. *Proc. Estonian Acad. Sci.*, 2014, **63**, 438–443.
- Mastitski, A., Haljasorg, T., Kipper, K., and Järv, J. Synthesis of aza-phenylalanine, aza-tyrosine, and azatryptophan precursors via hydrazine alkylation. *Proc. Estonian. Acad. Sci.*, 2015, 64, 168–178.
- Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A., et al. Solid-phase synthesis of "mixed" peptidomimetics using Fmoc-protected aza-β³-amino acids and α-amino acids. *J. Org. Chem.*, 2005, 70, 10701–10708.
- Busnel, O. and Baudy-Floc'h, M. Preparation of new monomers aza-β³-aminoacids for solid-phase syntheses of aza-β³-peptides. *Tetrahedron Lett.*, 2007, 48, 5767– 5770.
- 12. Ruan, M., Nicolas, I., and Baudy-Floc'h, M. New building blocks or dendritic pseudopeptides for metal chelating. *SpringerPlus*, 2016, **5**, 55.
- 13. Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines. *Chem. Soc. Rev.*, 2001, **30**, 205–213.
- Lee, J. and Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol., 2010, 5, 233–243.
- Spiegel, J., Mas-Moruno, C., Kessler, H., and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and biological activity. *J. Org. Chem.*, 2012, 77, 5271– 5278.
- Zouikri, M., Vicherat, A., Marraud, M., and Boussar, G. Azaproline as a beta-turn-inducer residue opposed to proline. J. Pept. Res., 1998, 52, 19–26.
- Garcia-Ramos, Y., Proulx, C., and Lubell, W. D. Synthesis of hydrazine and azapeptide derivatives by alkylation of carbazates and semicarbazones. *Can. J. Chem.*, 2012, 90, 11, 985–993.
- 18. Traoré, M., Doan, N. D., and Lubell, W. D. Diversity-oriented synthesis of azapeptides with basic amino acid residues: aza-lysine, aza-omithine, and aza-arginine. *Org. Lett.*, 2014, **16**, 3588–3591.
- Douchez, A. and Lubell, W. D. Chemoselective alkylation for diversity-oriented synthesis of 1,3,4-benzotriazepin-2-ones and pyrrolo[1,2][1,3,4]benzotriazepin-6-ones, potential turn surrogates. *Org. Lett.*, 2015, 17, 6046– 6049.

- 20. Doan, N.-D., Zhang, J., Traoré, M., Kamdem, W., and Lubell, W. D. Solid-phase synthesis of C-terminal azapeptides. *J. Pept. Sci.*, 2015, **21**, 387–391.
- Merlino, F., Yousif, A. M., Billard, E., Dufour-Gallant, J., Turcotte, S., Grieco, P., et al. Urotensin II(4–11) azasulfuryl peptides: synthesis and biological activity. *J. Med. Chem.*, 2016, 59, 4740–4752.
- Romera, J. L., Cid, J. M., and Trabanco, A. A. Potassium iodide catalyzed monoalkylation of anilines under microwave irradiation. *Tetrahedron Lett.*, 2004, 45, 8797–8800.
- Kabalka, G. W., Reddy, N. K., and Narayana, C. Lithium iodide-catalyzed alkylation of carboranes. *Tetrahedron Lett.*, 1992, 33, 7687–7688.
- 24. Satoh, T., Matsue, R., Fujii, T., and Morikawa, S. Alkylation of nonstabilized aziridinylmagnesiums catalyzed by Cu(I) iodide: a new synthesis of amines, including optically active form, bearing a quaternary chiral center. *Tetrahedron Lett.*, 2000, 41, 6495–6499.
- Carpino, L. A. and Han, G. Y. The 9-fluorenylmethoxycarbonyl amino-protecting group. *J. Org. Chem.*, 1972, 37, 3404–3409.
- Rabjohn, N. The synthesis and reactions of disazodicarboxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.
- McKay, F. C. and Albertson, N. F. New amine-masking groups for peptide synthesis. *J. Am. Chem. Soc.*, 1957, 79, 4686–4690.
- 28. Dourlat, J., Liu, W.-Q., Gresh, N., and Garbay, C. Novel 1,4-benzodiazepine derivatives with antiproliferative properties on tumor cell lines. *Biorg. Med. Chem. Lett.*, 2007, **17**, 2527–2530.

- Mäeorg, U., Pehk, T., and Ragnarsson, U. Synthesis of substituted hydrazines from triprotected precursors. *Acta Chem. Scan.*, 1999, 53, 1127–1133.
- Carpino, L. A., Santilli, A. A., and Murray, R. W. Oxidative reactions of hydrazines. V. Synthesis of monobenzyl 1,1-disubstituted hydrazines and 2-amino-2,3-dihydro-1H-benz[de]isoquinoline. *J. Am. Chem. Soc.*, 1960, 82, 2728–2731.
- Gwaltney, S. L., O'Connor, S. J., Nelson, L. T. J., Sullivan, G. M., Imade, H., Wang, W., et al. Aryl tetrahydropyridine inhibitors of farnesyltransferase: bioavailable analogues with improved cellular potency. *Bioorg. Med. Chem. Lett.*, 2003, 13, 1363–1366.
- Bouayad-Gervais, S. H. and Lubell, W. D. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame. *Molecules*, 2013, 18, 14739–14746.
- Squibb, E. R. and Sons, Inc. Preparation of N-Substituted Azetidinone Derivatives as Antibiotics.
 Belgian patent BE 905 205; Chem. Abstr., 1988, 108, 693, 55 763e.
- 34. Peifer, M., Giacomo, F. D., Schandl, M., and Vasella, A. Oligonucleotide analogues with integrated bases and backbone hydrazide- and amide-linked analogues. 1. Design and synthesis of monomeric building blocks. *Helv. Chim. Acta*, 2009, 92, 1134–1166.
- Hartmut, N. Hydrazinverbindungen als Heterobestandteile in Peptiden. VI. Weitere Derivate der Hydrazinoessigsäure und ihre Verwendung zur Synthese von Hydrazino- und N-Amino-peptiden. *Chem. Ber.*, 1965, 98, 3451–3461.

Kaaliumjodiidi katalüüs kaitstud hüdrasiinide alküülimises

Anton Mastitski, Aleksander Abramov, Anneli Kruve ja Jaak Järv

Kaitstud bensüülhüdrasiinide ja hüdrasinoetaanhappe estrite sünteesiks kasutati kaaliumjodiidi katalüüsitud hüdrasiini derivaatide reaktsiooni bensüülhalogeniidide ning halogeenetaanhappe estritega. Nende reaktsioonide läbiviimiseks tekitati vähem reaktsioonivõimelistest, aga stabiilsematest halogeniididest reaktsioonivõimelised jodiidi molekulid *in situ* tingimustes, mis kiirendas oluliselt hüdrasiinide alküülimise reaktsiooni. Kaaliumjodiidi katalüütilist rolli selles sünteesis tõestas fakt, et katalüsaatori puudumisel reaktsiooni praktiliselt ei toimunud.