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Abstract. The dq0 reference frame has become popular for modeling and control of traditional electric machines and small
power sources. However, its widespread use for modeling and analysis of large-scale, general power systems is still a pending
issue. One problem that arises when considering dq0 models is that they are typically based on local reference frames, and
therefore linking different models is not straightforward. In this paper we propose to approach this problem by modeling the
network and its components using a dq0 transformation that is based on a unified reference frame. We demonstrate this idea on the
basis of synchronous machines and photovoltaic generators, and we also establish a dq0-based dynamic model of a transmission
network. The resulting models all use a unified reference frame, and therefore can be directly linked to each other in simulation and
analytically. The paper is accompanied by a free software package (Levron, Y. and Belikov, J. Toolbox for Modeling and Analysis
of Power Networks in the DQ0 Reference Frame. 2016. www.mathworks.com/matlabcentral/fileexchange/58702) that constructs
the proposed dynamic models and provides tools for dynamic simulations and stability studies based on dq0 quantities.

Key words: power sytems, dq0 transformation, renewable energy, stability.

1. INTRODUCTION

In recent years, the increasing penetration of small dis-
tributed generators and fast power electronics based de-
vices has given rise to new challenges in modeling the
dynamics of power systems. This becomes evident when
considering large-scale systems for which it is especially
important to maintain the balance between accuracy and
complexity. This challenge has led to new dynamic mod-
els of power systems that are based on direct-quadrature-
zero (dq0) quantities [1]. Such models are not as gen-
eral as three-phase (abc)-based (EMTP-like) models and
are advantageous mainly when the transmission network
and units are balanced. However, dq0 models combine
two properties of interest: similar to transient models,
dq0 models are derived from physical representations,
and are therefore accurate at high frequencies, and as a
result the assumption of slowly varying signals is not re-

quired. In addition, dq0 models are time-invariant, which
allows defining an operating point, and enables small-
signal analysis. A detailed comparison of simulation
techniques based on the abc and dq0 reference frames
can be found in [2,3].

The dq0 transformation has been traditionally used
in transient analysis of electric machines [4] and is in-
creasingly used today for modeling distributed sources,
complex loads, renewable generators, and on devices
based on power electronics [5–7]. However, widespread
use of this transformation for modeling large-scale power
systems is still a pending issue. Toward this end, one
problem that arises when considering dq0 models is that
units are typically based on local reference frames, and
therefore linking different models is not straightforward.
The idea of modeling a transmission network and loads
in a common dq reference frame was presented in [1,8],
assuming that the network consists only of resistors and
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inductors. These works consider a common reference
frame, meaning that all the units and the network share
the same reference, see [9]. Work [10] presents dq0-
based models of three-phase networks with RL elements.
Work [11] develops a small-signal dq0 model of a micro-
grid that includes synchronous machines and electroni-
cally interfaced distributed generators. In addition, an at-
tempt to derive a model of a general network is presented
in [12], where it is shown how to construct a state-space
model of the network that is nonminimal. A further ex-
tension of this paper is presented in [13].

In this paper we continue these ideas and propose
a method for modeling the network and its components
using a dq0 transformation that is based on a unified ref-
erence frame, where the main objective is to create dq0-
based models of large-scale power systems that are both
accurate and time-invariant. The resulting models all use
a unified reference frame, and therefore can be directly
linked to each other in simulation and analytically. We
open the paper by recalling the basic transformation from
one reference frame to another and demonstrate this pro-
cess using the classic example of a synchronous machine
connected to an infinite bus. The paper then extends this
example and presents a dq0-based dynamic model of a
general transmission network, using ideas presented in
[10,14] and based on the network topology defined in
MATPOWER [15]. We also develop models of several
typical units. This approach is demonstrated numerically
in a dedicated software tool available in [16]. Several
numeric examples are described in detail: a 4-bus sys-
tem showing comparison between quasi-static, abc-, and
dq0-models; a 14-bus system illustrating the joint dy-
namics of synchronous machines, photovoltaic genera-
tors, and the transmission network; and a large 200-bus
system demonstrating small-signal analysis.

2. PRELIMINARIES AND A MOTIVATING
EXAMPLE

Consider a reference frame rotating with an angle of
θ(t). For instance, in a synchronous machine, θ(t)
is typically selected to be the rotor electrical angle.
Let ζ̃ represent the quantity to be transformed (current,
voltage, or flux), and use the compact notation ζabc =
[ζa,ζb,ζc]

T, ζdq0 = [ζd ,ζq,ζ0]
T. Then, the dq0 transfor-

mation can be written as [4, Appendix C]

ζ̃dq0 = Tθ ζabc (1)

with
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2
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Further in this paper we aim to explore an alternative

reference frame that rotates with the unified angle ωst,

where ωs is the steady-state system frequency or the fre-
quency of an infinite bus, see [17] for more details. We
will show that such selection provides several advantages
in the connectivity of a large variety of system compo-
nents and also can be used to derive compact and easy-
to-use small-signal models describing the power system
dynamics. The dq0 transformation can be redefined with
respect to a new reference frame rotating with an angle
ωst by direct substitution of θ = ωst in (1) as

ζdq0 = Tωs ζabc. (2)

A formula that allows conversion of signals from the
standard reference frame (defined with respect to θ ) to
the new frame (defined with respect to ωst) is given as[

ζd
ζq
ζ0

]
=

[ sin(δ ) cos(δ ) 0
−cos(δ ) sin(δ ) 0

0 0 1

]ζ̃d

ζ̃q
ζ0

 , (3)

where δ (t) = θ(t)−ωst +π/2, the variables ζ̃d , ζ̃q are
defined with respect to θ , and ζd , ζq are defined with
respect to ωst.

To explain the idea of a unified reference frame, we
start by recalling a classical model of a synchronous
machine connected to an infinite bus, and present both
models using a unified reference frame. Assume a sim-
plified synchronous machine represented as an ideal volt-
age source behind a synchronous inductance L̃d . The
machine is connected to an infinite bus, as shown in
Fig. 1. Both the infinite bus and the internal synchronous
machine are represented as voltage sources. The syn-
chronous machine voltage is ṽd = 0, ṽq =Ve, v0 = 0, with
a reference angle of θ . In this example θ is the electric
angle of the rotor in respect to the stator. The infinite bus
has a constant frequency of ωs, so its voltage is given by
vd =Vg, vq = 0, v0 = 0, with a reference angle of ωst.

Now the goal is to construct a dynamic model of
the complete system based on dq0 signals. However,
a potential problem is that the two voltage sources are
defined with respect to two different reference frames (θ
and ωst). To solve this, we choose ωst as a unified refer-
ence frame for both the infinite bus and synchronous ma-
chine, and construct a model of the synchronous machine

L̃d

synchronous
inductance

SG
ṽd = 0

ṽq =Ve

v0 = 0

synchronous machine

∞
vd =Vg

vq = 0

v0 = 0

infinite
bus

Fig. 1. Single-phase diagram of a simple synchronous machine
(SG) connected to an infinite bus (∞).
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using signals in this reference frame. The synchronous
machine voltage is now obtained by substituting ṽd = 0,
ṽq =Ve, v0 = 0 in (3), which yields[vd

vq
v0

]
=

[Ve cos(δ )
Ve sin(δ )

0

]
,

δ = θ −ωst +π/2.

(4)

In addition, the dynamic behavior of the angle δ is de-
scribed by

d2

dt2 δ =
poles
2Jωs

(
−P3φ +Pm−Kd

d
dt

δ

)
, (5)

which is the classic swing equation. The term J is the
rotor constant of inertia, poles is the number of machine
poles (must be even), Pm is the mechanical power, and Kd
is the damping constant. The three-phase power can be
computed as P3φ = 3

2 (vd id + vqiq +2v0i0). Let δ = φ1,
then the combination of (4) and (5) results in a state–
space model given as

d
dt

φ1 =φ2,

d
dt

φ2 =
poles
2Jωs

(
−3

2
Ve (cos(φ1)id + sin(φ1)iq)

+Pm−Kdφ2

)
,

vd =Ve cos(φ1), vq =Ve sin(φ1), v0 = 0.

(6)

Note that the model represents only the machine’s volt-
age source and does not include the synchronous induc-
tance, which is modeled separately in the next section.

3. MODELING POWER SYSTEM
COMPONENTS USING A UNIFIED
REFERENCE FRAME

In this section we show that this idea can be extended and
that complex networks and various power system units
can be connected to each other by using signals that are
defined with respect to the unified reference frame. This
allows us to obtain a complete model of the system that
is based entirely on dq0 quantities, and thus provides a
constructive method to analyze the system’s dynamic be-
havior.

3.1. State-space models of linear passive
transmission networks

We open this section by developing models of single pas-
sive components [18], using the unified reference frame.
The discussion that follows shows how to combine these
models to describe the dynamics of general transmission

networks. The dynamic model of an inductor is given in
the abc reference frame as

L
d
dt

Iabc,12 =Vabc,1−Vabc,2, (7)

and can be converted to the dq0 frame as follows. Ob-
serve that the differentiation of Tωs results in

d
dt

Idq0 =
dTωs

dt
Iabc +Tωs

d
dt

Iabc, (8)

and the derivative of Tωs can be expressed as

d
dt

Tωs =

[ 0 ωs 0
−ωs 0 0

0 0 0

]
Tωs = W Tωs . (9)

Substitute (7) and (9) into (8), and use relations (2) to get

d
dt

Idq0,12 = W Idq0,12 +
1
L

(
Vdq0,1−Vdq0,2

)
. (10)

This equation describes a state-space model of the three-
phase inductor. Analogously, the model of a capacitor C
is given as

d
dt

(
Vdq0,1−Vdq0,2

)
= W

(
Vdq0,1−Vdq0,2

)
+

1
C

Idq0,1.

And for a resistor R the model is given by simple static
relations

Vdq0 = I3RIdq0, (11)

where I3 denotes the 3×3 identity matrix.
Similarly, by combining elementary passive compo-

nents, any balanced transmission network can be mod-
eled based on the unified reference frame. Define the
dq0 signals vd,n, vq,n, v0,n to be the voltages on bus n; id,n,
iq,n, i0,n to be the injected currents to bus n; and Vd(t) =
[vd,1(t), . . . ,vd,N(t)]T, Id(t) = [id,1(t), . . . , id,N(t)]T, etc.,
where N is the number of buses. Assume a network with
the standard branch [15] as in Fig. 2.

This network can be represented in the minimal
state-space form using dq0 signals as [13]

d
dt

ξ = Aξ ξ +Bξ u,

y =Cξ ξ +Dξ u,
(12)

where u = [Vd ,Vq,V0]
T and y = [Id , Iq, I0]

T.

yi
shunt

element
bus i

(from)
bus k
(to)

yk
shunt

element

Lik Rik
ideal

transformer

τik : 1

Fig. 2. Standard branch connecting buses i and k.
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In addition, often disconnected buses should be elim-
inated. The need for this arises in several situations:
• Sometimes certain buses are not connected to either a

generator or a load. In this case the current injected
into the bus is zero.
• Frequently loads are modeled as shunt elements and are

integrated into the network model. In this case load
buses appear as disconnected buses with zero current.
• In many scenarios there is a need to analyze the dynam-

ics or stability of a certain subset of units in the network,
typically only the generators. In such cases elimination
of the disconnected buses results in a simpler dynamic
model in which the inputs and outputs relate only to
the required subset of buses. This is usually done after
integrating the loads into the network model as shunt
elements.

The dynamic model after disconnected buses have
been eliminated is

d
dt

ξ̃ = Ã
ξ̃

ξ̃ + B̃
ξ̃

ũ,

ỹ = C̃
ξ̃

ξ̃ + D̃
ξ̃

ũ,
(13)

where ũ and ỹ represent the input/output following the
reduction procedure. Bus elimination is achieved by con-
trolling the inputs of the buses being eliminated, so that
the corresponding outputs are zeroed. Assume for in-
stance that the ith input and ith output are eliminated.
This is done using the dynamic model output equation
y = Cξ ξ +Dξ u. In case the matrix Dξ of the original
dq0 model is diagonal, the output yi may be zeroed by
controlling the ith input so that ui =−D−1

i,i Ciξ , where Ci
is the ith row in matrix Cξ . Thus, the input ui and the
output yi are eliminated and will not appear in the re-
duced model. In more complex systems, there is a need
to transform the state vector and to compute a new dy-
namic model such that the corresponding rows in C̃

ξ̃
are

also zero. This may be achieved by a LU decomposition
of the relevant rows in Cξ . More details regarding this
procedure may be found in [16].

3.2. Physical synchronous machine

For completeness, consider a more sophisticated (physi-
cal) model of a synchronous machine [4]. The model pre-
sented herein captures the interaction of the direct-axis
magnetic field with the quadrature-axis mmf and of the
quadrature-axis magnetic field with the direct-axis mmf,
as well as the effects of resistances, transformer voltages,
field winding dynamics, and salient poles. The parame-
ters are explained in Table 1.

By following [4] and omitting laborious algebraic
manipulations, the resulting state-space model of a syn-
chronous machine in the dq0 reference frame (with re-
spect to ωst) is given by

d
dt

φ1 =−
2RaL f f

L2
β

φ1 +φ2φ5 +
2RaLa f

L2
β

φ4

+ sin(φ6)vd− cos(φ6)vq,

d
dt

φ2 =−
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Lq
φ2−φ1φ5 + cos(φ6)vd + sin(φ6)vq,

d
dt
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L0
φ3 + v0, (14)

d
dt
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dt
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)
,

d
dt

φ6 =φ5−ωs

with outputs defined as

id =−
2L f f

L2
β

sin(φ6)φ1−
1
Lq

cos(φ6)φ2 +
2La f

L2
β

sin(φ6)φ4,

iq =
2L f f

L2
β

cos(φ6)φ1−
1
Lq

sin(φ6)φ2−
2La f

L2
β

cos(φ6)φ4,

i0 =−
1
L0

φ3, i f =−
3La f

L2
β

φ1 +
2Ld

L2
β

φ4,

ω = φ5, δ = φ6,

where L2
β
= 2LdL f f −3L2

a f . In this model, the state vari-
ables are φ1 = λd , φ2 = λq, φ3 = λ0, φ4 = λ f , φ5 = ω ,
δ = φ6; the inputs are vd , vq, v0, v f , Tm; and the outputs
are id , iq, i0, i f ,ω . Unlike the simplified model (6), this
model includes the inductance terms Ld , Lq, L0.

A convenient property of the model presented above
is that its inputs and outputs are defined with respect to
the unified reference frame rotating with ωst, and there-
fore it can be directly connected to the network. For
instance, connecting the synchronous machine model to

Table 1. Nomenclature: synchronous machine

Variable Description
λd , λq, λ0 Flux linkages
λ f Field winding flux linkage
ṽd , ṽq, v0 Stator voltages
ĩd , ĩq, i0 Stator currents
v f , i f Field windings voltage and current
Ld , Lq, L0 Synchronous inductances
La f Mutual inductance between the field

winding and phase a
L f f Self-inductance of the field winding
Ra,R f Armature and field winding

resistance
J Rotor moment of inertia
Tm Mechanical torque
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an infinite bus is immediate. An infinite bus with a
frequency of ωs is defined in this reference frame by
vd =

√
2Vg, vq = v0 = 0, where Vg is the infinite bus RMS

voltage. Therefore, a synchronous machine connected to
an infinite bus can be modeled by direct substitution of
these voltages into (3.2).

3.3. Photovoltaic generator

Similarly to the synchronous machine, photovoltaic in-
verters can also be represented in the unified reference
frame that rotates with ωst. Several models of photo-
voltaic generators are available in the recent literature, as
reviewed in [10]. Regardless of the model used, dq0 sig-
nals defined in respect to a local reference frame can be
converted to a unified reference frame. Here we demon-
strate this process using a photovoltaic inverter model
based on [19]. The inverter is modeled by

d
dt

vb =
1

vbCb

[
Ppv−

3
2
(
vd îd + vq îq

)]
,

k = Kp(vb− vre f )+Ki

∫
(vb− vre f ),

îd = kvd , îq = kvq, î0 = 0,

where Ppv denotes the DC power at the output of the
photovoltaic array, Cb is the bus capacitor (connected at
the input of the switching devices), vb is the bus capaci-
tor voltage, and vre f is the reference voltage for the bus
capacitor control circuitry. The term 3

2 (vd îd +vq îq) is the
inverter output power in terms of dq0 signals. Based on
[19], a simple PI controller is used here to control the
bus voltage vb. Hence, Kp and Ki denote the coefficients
for the proportional and integral terms, respectively. The
second part describes the inverter output capacitor as

d
dt

φ1 =
1

Csh

(
îd− id

)
+ωsφ2,

d
dt

φ2 =
1

Csh

(
îq− iq

)
−ωsφ1,

d
dt

φ3 =
1

Csh

(
î0− i0

)
with vd = φ1, vq = φ2, v0 = φ3, and where Csh is the in-
verter output capacitance.

4. NUMERIC TEST CASES

This section shows several test cases that illustrate the
main idea of modeling and analysis in the unified refer-
ence frame. Three networks with 4, 14, and 200 buses,
whose parameters are taken from [15], are considered.
The first example presents a brief comparison between
the quasi-static, abc, and dq0 models. The second and
third examples are devoted to the small-signal analysis
of the 14- and 200-bus networks.

4.1. Comparison of quasi-static, abc, and dq0
models

Figure 3 illustrates comparison between conventional
abc and dq0 models presented in terms of sparsity and to-
tal number of nonzero elements for various test-case net-
works taken from the MATPOWER database [15]. The
sparsity indices are computed as the ratio between zero
elements in all system matrices and the total number of
elements. Observe that both models have approximately
the same number of nonzero elements; however, the abc
model is slightly sparser.

Consider now a simple 4-bus network. Its single-line
diagram is shown in Fig. 4.

The quasi-static and dq0 models were constructed
using the software package available in [16]. The abc
model was implemented using MATLAB toolbox Sim-
scape Power Systems. The transient behavior is ana-
lyzed under changing operating conditions as depicted
in Fig. 5. The input voltage is subsequently changed
from the initial value as follows. The ramp signal with
the slope of 200 and upper limit of 10 kV is used to
change the d component of the input voltage vd,1 at time
t = 0.02 s. Then the input is stepped from 10 to 20 kV
at t = 0.12 s. The output current dq components are
measured on bus 2. Observe that all models coincide in
the steady state as expected. However, the abc and dq0
models are able to more accurately describe the transient
behavior as they capture high-frequency phenomena.
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Fig. 3. Comparison between abc and dq0 models. The top plot
presents the sparsity index, and the bottom plot illustrates the
total number of nonzero elements.
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Fig. 4. Single-line diagram of a 4-bus system.
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Fig. 5. Transient response of a 4-bus network. The lines corre-
spond to quasi-static (- -), abc (—), and dq0 (· · ··) models.

4.2. A 14-bus network

Consider now the IEEE 14-bus system. This network
was modified by replacing synchronous machines con-
nected to buses 6 and 8 by photovoltaic generators. Fig-
ure 6 shows a single-line diagram of the system, which
is composed of two 300 and 150 MW synchronous gen-
erators and two 20 MW photovoltaic energy sources. In
this figure, the values of P in MW and Q in MVar rep-
resent the operating point, which is obtained by solving
the power flow equations. Bus 1 represents an infinite
bus modeled by a voltage source. The complete sys-
tem is constructed in the unified dq0 reference frame. A
sketch of the signal flow diagram of the complete system
is shown in Fig. 7.

Simulation parameters of synchronous machines are
given in Table 2. Note that mechanical input powers
(Pm ≈ Tmωs) are used as new external inputs.

2

SG1

P = 39.2
Q =−3.2

P=
32
.2

Q
=

8.1

P = 42.9,Q = 9.7

P = 51.6,Q = 17.9

3

SG2

P = 19.6
Q =−0.1

P =−15.0
Q =−2.5

1

∞

P = 165.2
Q = 76.2

P = 110.6
Q = 50.1
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Q = 26.1
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P = 31.6
Q = 18.2 4
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Q = 5.6

7
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P = 3.6
Q =−0.2

P = 7.5
Q = 0.7
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P =−4.5
Q =−5.4
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=
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8
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Fig. 6. Single-line diagram of a 14-bus system with two syn-
chronous machines (SG) and two renewable energy sources
(PV). Values of P and Q denote the operating point (power flow
solution).

d
dt

ξ = Aξ ξ +BξVdq0

Idq0 =Cξ ξ +DξVdq0

14-bus

Transmission

Network

Vdq0,3

Idq0,3

SC+
−

Îdq0,3

SG2

Pm,3

Vdq0,2

Idq0,2

SC+
−

Îdq0,2

SG1

Pm,2

Vdq0,6

Idq0,6

SC +
−

Îdq0,6

PV1

Ppv,6

Vdq0,8

Idq0,8

SC +
−

Îdq0,8

PV2

Ppv,8

∞

Vdq0,1

Fig. 7. Sketch of the signal flow diagram for the complete sys-
tem. The following blocks are used: synchronous generator
(SG), shunt capacitor (SC), photovoltaic generator (PV), and
infinite bus (∞). Signals entering the network (dashed lines)
are subject to rerouting.

Parameters of the infinite bus are vd,1 = 1.5 · 105 V
and vq,1 = v0,1 = 0 V. Moreover, ωs = 2π50 rad/s is used
to define the frequency of the unified reference frame.
Simulation parameters for photovoltaic generators are
given in Table 3.

Further we perform a small-signal stability analysis
of an interconnected system, which is done in several
steps: first the system’s operating point is computed by
solving the system power flow equations and convert-
ing the resulting complex voltages and currents to dq0
quantities. Next, unit models are linearized in the neigh-
borhood of this operating point, and the overall system is
described using state equations. We start with the nom-
inal case and use the initial values provided in Tables 2
and 3. An array of Bode plots representing the frequency
responses of the linear model is illustrated in Fig. 8 for
Pm,2 → P2 and Pm,3 → P2 input–output pairs. These fig-
ures demonstrate that synchronous machines are weakly
coupled at low frequencies but nonetheless affect each
other at a certain resonance frequency of about 30 rad/s.

Table 2. Simulation parameters: synchronous machine

Parameter SG1 SG2 Units
Ra 5.46 10.2 Ω

R f 48.28 90.2 Ω

L f f 57.93 108.24 H
La f 2.46 4.59 H
J 1.59 ·103 0.79 ·103 kg.m2

Ld = Lq = 0.1L0 0.21 0.39 H
Pm 120 60 MW

Table 3. Simulation parameters: photovoltaic generator

Parameter Cb vre f Csh Ppv Kp Ki

PV1, PV2 60 800 3.18 30 1.3 ·10−6 0.3
Units µF V µF MW – –
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Fig. 8. Frequency responses in a 14-bus network.

In addition, as expected, high frequencies in the mechan-
ical powers are filtered by the network inductances and
synchronous machines inertia.

The transient process is shown in Fig. 9 for ac-
tive powers. As expected, the infinite bus reacts to the
changes in power generation. Table 4 provides numeric
information for the largest eigenvalues. These results are
then visualized in Fig. 10(a), which shows the root locus
of dominant poles for 3 intervals of changing operating
conditions. In addition, steps are depicted in Fig. 10(b).

Next, the dynamic behavior is analyzed under the
changing operating conditions as presented in Fig. 10(b).
The nonlinear models of units are then re-linearized in
the neighborhood of new operating points when the tran-
sient process is complete and the system is in the steady
state. Time instances are selected as t ∈ {1.9,3.9,5.9,8}.
Signals are subsequently changed from their initial val-
ues as follows. The mechanical powers Pm,2 and Pm,3 of
SG1 and SG2 at buses 2 and 3 are increased from 120
to 180 MW at t = 2 s and from 60 to 90 MW at t = 6 s,
respectively. The DC power Ppv,6 at the output of the
photovoltaic array PV1 connected to bus 6 is decreased
from 30 to 15 MW at t = 4 s, while Ppv,8 is kept constant
(30 MW).

Fig. 9. Transient process of single-phase active powers.

Table 4. Change of the dominant eigenvalues

Eig. # Initial Pm,2 Ppv,6 Pm,3

1 −2.1397 −1.9505 −1.9493 −1.8084
2 −2.5316 −2.3335 −2.333 −2.1191
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Fig. 10. Eigenanalysis: root locus of the dominant eigenvalues
when external input signals are changed. Dotted arrows indi-
cate the direction of poles change.

From Fig. 9 it can be seen that the provided changes
in input powers directly affect the steady-state conditions
and cause a change of the operating point. The presented
analysis may assist in understanding the dynamic behav-
ior of the system. For example, from Fig. 10(a) it follows
that poles move toward the origin, which means that the
response of the system becomes slower with the increase
of external powers. In addition, observe that a change in
the DC power Ppv,6 of the photovoltaic array connected
to bus 6 has a minor effect (zoomed area in Fig. 10(a))
on the overall dynamics of the system, because poles
are slightly moved from their positions. This is due to
the fact that the photovoltaic inverter connected to the
grid is less powerful than the respective synchronous ma-
chines. Clearly, if the amount or the overall capacity of
photovoltaic energy sources is increased, the effect will
be more significant. This, in particular, means that the
proposed approach may help to estimate the amount of
renewable energy produced by PVs within the stability
limits.

4.3. A 200-bus network

In this section, we show that the proposed approach
can be applied for the analysis of larger systems. In
particular, consider a 200-bus system. A detailed de-
scription and numeric values can be found in [15] based
on [20]. Models of the transmission network, genera-
tors, and loads are constructed using [21]. Generators
are described using the swing equation (6), and loads are
represented based on the balanced series RL impedances.
The small-signal model is obtained similarly to the case
of the 14-bus network. The complete (with attached units
and loads) dq0 model has 1470 states and 48 external in-
put signals (mechanical powers). All the components
are modeled in the unified reference frame rotating with
ωs = 2π50 rad/s. The sparsity pattern of the matrix
A (sparsity index is 0.49%) and the distribution of the
dominant eigenvalues are shown in Fig. 11. The dynamic
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Fig. 11. Sparsity pattern of the matrix A and the distribution of
the dominant eigenvalues for the dq0 model of the feedback-
connected 200-bus system.

behavior is further analyzed under changing operating
conditions to demonstrate similarities and differences be-
tween quasi-static and dq0 models.
Scenario (similarities): In the first test case the system
is simulated under the nominal conditions, and then the
overall active power demand of all loads is increased by
15% and 35% from 2229 to 2563 and 3009 MW, respec-
tively. Table 5 provides numeric information, in which
the first three eigenvalues with the largest real parts are
shown for both quasi-static (qs) and dq0 models. Ob-
serve that both quasi-static and dq models provide almost
identical dominant poles.
Scenario (differences): Consider first the case when the
moment of inertia (J) of the synchronous machine con-
nected to bus 196 is changed. The moment of inertia is
first increased and then decreased by 4 times from the
nominal value. The dominant poles of the quasi-static
and dq models are similar for higher values but differ
for a smaller moment of inertia. Table 6 provides nu-
meric information, in which the first several eigenvalues
with the largest real part are shown. Observe that the dq
model predicts that the system is unstable, but the quasi-
static model fails to predict this instability.

Consider now the case when several line resistances
are changed. In particular, we change the branch re-
sistances for the lines connecting buses 135 → 133,
136→ 133, and 189→ 187. First, branch resistances
are increased by 1.5 times and then decreased by 5 times
from their nominal values. Table 7 provides the numeric
information, in which the first three eigenvalues with the

Table 5. Dominant poles: increase in active power consump-
tion

Model Eig. # Nominal Step (15%) Step (35%)
dq0

1
−1.1751 −1.0612 −0.7555

qs −1.1706 −1.0570 −0.7522
dq0

2
−2.6954 −2.6062 −2.3191

qs −2.6896 −2.6007 −2.3174
dq0

3
−2.7720 −2.6549 −2.3553

qs −2.7697 −2.6517 −2.3473

Table 6. Dominant poles: change in the moment of inertia

Model Eig. # Nominal Increase Decrease
dq0 1 −1.5044 −1.4843 3.25±267.8 j
qs −1.5019 −1.4819 −1.5064
dq0 2 −2.8441 −2.8422
qs −2.8447 −2.8407 −2.8455
dq0 3 −2.9222 −2.9204 −1.5100
qs −2.9200 −2.9183 −2.9203

Table 7. Dominant poles: change in branch resistances

Model Eig. # Nominal Increase Decrease
dq0

1
−1.5044 −1.5031 0.13±310.98 j

qs −1.5019 −1.5006 −1.5040
dq0

2
−2.8441 −2.8471

qs −2.8447 −2.8437 −2.8463
dq0

3
−2.9222 −2.9209 −1.5100

qs −2.9200 −2.9188 −2.9220

largest real part are shown. Observe that although the
quasi-static model provides quite similar results for the
‘increase’ case, it fails to predict instability when resis-
tances are decreased.

This example shows that the traditional small-signal
stability analysis based on quasi-static approximation of
the network has to be used carefully as in some cases it
may give misleading results.

5. DISCUSSION AND CONCLUSIONS

A developing solution to model the dynamics of large-
scale power systems is to use dq0 quantities, assum-
ing that the transmission network is symmetrically con-
figured. This approach combines two properties of inter-
est: similar to transient models, dq0-based models are
derived from physical models and are therefore accu-
rate at high frequencies. In addition, similarly to time-
varying phasor models, dq0 models are time invariant.
This property allows one to define an operating point
and enables small-signal analysis. As a result, dq0-based
analysis is expected to be beneficial when considering
the stability of large-scale power networks that include a
variety of distributed and renewable power sources.

A current challenge is to merge various dq0-based
models appearing in the literature to obtain a complete
model of a large power system. In this paper we approach
this problem by representing various dq0 models in a ref-
erence frame rotating with a unified angle. This enables
direct connections between units of different types and
the network and provides a means to perform a small-
signal stability analysis of large-scale systems. This ap-
proach is demonstrated on the basis of two standard units
(synchronous machine and photovoltaic generator), and
in addition, a model of the transmission network based
on the unified reference frame is provided. The paper is
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accompanied by a free software package available in [16]
that constructs the proposed dynamic models and pro-
vides tools for dynamic simulations and stability studies
based on dq0 quantities. Three particular examples are
presented in this paper.
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Energiavõrkude dünaamiline modelleerimine ja stabiilsuse analüüs, kasutades dq0
teisendust ning ühtlustatud koordinaadisüsteemi

Juri Belikov ja Yoash Levron

dq0 koordinaadisüsteem on muutunud väga populaarseks traditsiooniliste masinate ja väikeste energiaallikate
modelleerimiseks ning juhtimiseks. Kuid selle lai kasutus suuremõõtmeliste energiasüsteemide modelleerimiseks ja
analüüsiks on ikka veel lahtine küsimus. Üheks tüüpiliseks dq0 mudeli probleemiks on lokaalsed koordinaadisüstee-
mid, mistõttu erinevate mudelite ühendamine pole alati otsene. Artiklis on välja pakutud lähenemine, kus võrk ja
selle komponente on modelleeritud, kasutades dq0 teisendust, mis põhineb unifitseeritud koordinaadisüsteemil. See
idee on illustreeritud, kasutades sünkroonsete masinate ja päikesegeneraatorite mudeleid. Kõik mudelid kasutavad
unifitseeritud koordinaadisüsteemi, mistõttu need kõik saavad otseselt üksteisega ühenduda nii simulatsioonis kui ka
analüütiliselt. Artikliga on kaasas tasuta tarkvarapakett, mis konstrueerib pakutud dünaamilised mudelid.
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