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Abstract. In this paper, the form of a right linear map preserving the left spectrum of quaternion matrices of order 2 is characterized.
The obtained conclusion is different from the classical results of the linear map preserving eigenvalues of complex matrices.
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1. INTRODUCTION

Let R and C be the fields of the real and complex numbers, respectively. The quaternion division ring over
R, denoted by H, is the set of all elements with the form a0 +a1i+a2 j+a3k, where a0,a1,a2, and a4 ∈ R;
moreover,

i2 = j2 = k2 = i jk =−1;

i j =− ji = k, jk =−k j = i,ki =−ik = j.

If a = a0 +a1i+a2 j+a3k, let

a = a0 −a1i−a2 j−a3k, |a|=
√

a2
0 +a2

1 +a2
2 +a2

3, and Rea = (a+a)/2

be the conjugate, modulus, and real part of a, respectively. It is clear that R⊂C⊂H, and the multiplication
operation of quaternions is noncommutative.

Let Mn(R), Mn(C), and Mn(H) denote the set of n×n matrices over R, C, and H, respectively. Clearly,
Mn(R) ⊂ Mn(C) ⊂ Mn(H). Let E ∈ Mn(C) denote the identity matrix, Ei j ∈ Mn(C) the matrix whose
(i, j)th entry is 1 and the other entries are zero. If A ∈ Mn(C), we write σp(A) as the set of distinct complex
eigenvalues of A and trC(A) as the trace of A. In addition, for A = [ast ] ∈ Mn(H), let AT = [ats] be the
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transpose of A, observing that there exist unique A1,A2 ∈ Mn(C) such that A = A1 +A2 j, thus we have
AT = AT

1 +AT
2 j.

Due to the noncommutativity of quaternions, there are two types of eigenvalues and linear maps: left and
right eigenvalues of quaternion matrices and left and right quaternion linear maps. This paper only concerns
left eigenvalues of a quaternion matrix and right quaternion linear maps, so their definitions are given below,
but the introductions to right eigenvalues and left quaternion linear maps are omitted. Readers can refer to
[1], [9], and [14] for more information about eigenvalues and linear maps related to the quaternion matrix.

Definition 1.1 ([9,14]). Let A ∈ Mn(H), λ ∈H is called a left eigenvalue of A if Ax = λx for some nonzero
x ∈Hn, where Hn is the set of vectors of n components over H. The set of distinct left eigenvalues is called
the left spectrum of A, denoted σl(A).

Definition 1.2 ([1,9]). A map Φ : Mn(H)→ Mn(H) is said to be a right quaternion linear map if Φ satisfies

Φ(A+B) = Φ(A)+Φ(B) and Φ(Aq) = Φ(A)q

for all A,B ∈ Mn(H) and q ∈H.

As for the studies of the left spectrum of a quaternion matrix, in 1985, Wood [13] used a topological
method to show that the left eigenvalue always exists and demonstrated that left eigenvalues of a 2× 2
quaternion matrix can be found by solving a quaternionic quadratic equation; in 2001, Huang and So [2]
computed the left spectrum of a 2× 2 quaternion matrix by solving quaternionic polynomials of degree
2; in 2005, So [10] also showed that the left spectrum of a 3× 3 quaternion matrix can be found by this
algebraic approach. So far it is still an open problem whether such algebraic approach works for general
n×n quaternion matrices for n ≥ 4. For other properties and applications about quaternions and quaternion
matrices, readers can refer to [9,11,14] and references therein.

Linear preserver problems are the questions about characterizing linear maps on rings or algebras that
preserve certain properties, which are a very old and active research area in matrix and operator theory.
There has been a great deal of research in this area, especially on spaces of complex matrices. Here, we
omit the detailed introduction to linear preserver problems. For some surveys related to the linear preserver
problems, readers can consult [3–6,8,11].

From [9,12,14], we can see that there is a 2× 2 complex matrix whose left spectrum is an infinite set,
and the left spectrum of a quaternion matrix is not a similarity invariant in general, thus the classical result
([7, Theorem 3]) about a linear map preserving eigenvalues of complex matrices is not valid for the left
spectrum of a quaternion matrix. So we will characterize the form of the linear map preserving the left
spectrum of quaternion matrices in this paper.

Considering that the left spectrum of a 2× 2 quaternion matrix can be found by the explicit formulas
introduced in [2], and finding the left spectrum of a quaternion matrix is very difficult to deal with in general,
actually so far there is no algorithm for computing the left spectrum of an n×n quaternion matrix for n ≥ 3,
so we have decided to work only with 2×2 quaternion matrices.

2. PRELIMINARIES

In order to prove the following Theorem 3.2, which characterizes the form of the linear map preserving the
left spectrum of 2× 2 quaternion matrices, we need the following lemmas. For convenience, some known
results are also listed as Lemmas 2.1, 2.2, and 2.3.

Lemma 2.1 ([10, Lemma 3.1]). Let A ∈ Mn(H), and X ∈ Mn(R) be invertible, then σl(A) = σl(XAX−1).

Lemma 2.2 ([12, Lemma II.5.1.1 (ii)]). Let A ∈ Mn(C), then σl(A)∩C= σp(A).
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Lemma 2.3 ([2, Theorem 2.3, Corollary 3.7, Theorem 3.10]). Let A ∈ M2(H) and A =

[
a b
c d

]
.

(1) If bc = 0, then σl(A) = {a, d}.
(2) If bc ̸= 0, then σl(A) = {a+bλ : λ 2 +b−1(a−d)λ −b−1c = 0}.
(3) σl(A) is infinite but with a unique modulus and real part if and only if a,b,c,d ∈ R

such that (d −a)2 +4bc < 0.
(4) Furthermore, if A ∈ M2(C), then σl(A) is finite if and only if σl(A) = σp(A).

Remark. The above Lemma 2.3 characterizes the left spectrum of a 2× 2 quaternion matrix, and will
be used many times in the proof of Lemma 2.4. In particular, Lemma 2.3 (3) shows that σl(A) is an
infinite set and all elements in σl(A) are of the same modulus and real part if and only if a,b,c,d ∈ R and
(d − a)2 + 4bc < 0. Thus Lemma 2.3 (3) also gives a method for determining whether a 2× 2 quaternion
matrix is a real matrix.

Lemma 2.4. Let Φ be a right quaternion linear map from M2(H) into itself. If σl(A) = σl(Φ(A)) for all
A ∈ M2(H), then Φ(A) ∈ M2(C) for every A ∈ M2(C).

Proof. Let

Φ(E12) = B12 =

[
a b
c d

]
.

Since σl(E12) = {0}, by the assumptions of Φ, one has σl(E12) = σl(B12) = {0}.
When bc ̸= 0, note that σl(B12) = {0}, then a+bλ = 0. If a = 0, then bλ = 0. Since bc ̸= 0, we have

λ = 0. By Lemma 2.3 (2), then λ = 0 satisfies the following equation:

λ 2 +b−1(a−d)λ −b−1c = 0.

Consequently, c = 0; this contradicts to bc ̸= 0. Hence a ̸= 0. By a+bλ = 0, then λ =−b−1a. Again using
Lemma 2.3 (2), then

(−b−1a)2 +b−1(a−d)(−b−1a)−b−1c = 0.

Note that a ̸= 0, by simple computation, we imply that db−1 = ca−1 from the above equality.
Write db−1 = t, then

B12 =

[
a b
ta tb

]
.

When bc = 0, since σl(B12) = {0}, by Lemma 2.3 (1), we have

B12 = bE12 or B12 = cE21.

According to the above discussions, then B12 has three types of matrix representations. That is,

B12 =

[
a b
ta tb

]
, B12 = bE12, or B12 = cE21.

Let

Φ(E21) = B21 =

[
a′ b′

c′ d′

]
.

Similar to the arguments of B12, then B21 also has matrix representations

B21 =

[
a′ b′

t ′a′ t ′b′

]
, B21 = b′E12, or B21 = c′E21.

In the following, we give the proofs of B12 and B21 ∈ M2(R).
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By Lemma 2.3 (3), we imply that σl(E21 − nE12) is an infinite set and its elements are of the same
modulus and real part for n = 1, 2. Note that

σl(E21 −nE12) = σl(Φ(E21 −nE12)) = σl(Φ(E21)−nΦ(E12)) = σl(B21 −nB12).

Thus σl(B21−nB12) is also an infinite set and its elements are of the same modulus and real part for n= 1, 2.
If

B12 =

[
a b
ta tb

]
, B21 =

[
a′ b′

t ′a′ t ′b′

]
,

apply Lemma 2.3 (3) to B21 −B12 and B21 −2B12, then

a−a′, b−b′, ta− t ′a′, tb− t ′b′ ∈ R.

2a−a′, 2b−b′, 2ta− t ′a′, 2tb− t ′b′ ∈ R.

By simple computation, then B12 and B21 ∈ M2(R).
If

B12 =

[
a b
ta tb

]
and B21 = b′E12, or B12 =

[
a b
ta tb

]
and B21 = c′E21,

also apply Lemma 2.3 (3) to B21 −B12, we can obtain B12 and B21 ∈ M2(R).
If B12 = bE12 and

B21 =

[
a′ b′

t ′a′ t ′b′

]
,

applying Lemma 2.3 (3) to B21 −B12, then B12 and B21 ∈ M2(R).
If B12 = bE12 and B21 = b′E12, then σl(B21 − B12) = {0}. This gives a contradiction because

σl(B21 −B12) is an infinite set. Hence such case is impossible to arise.
If B12 = bE12 and B21 = c′E21, apply Lemma 2.3 (3) to B21 − B12, then b, c′ ∈ R. Thus B12 and

B21 ∈ M2(R).

For B12 = cE21 and B21 =

[
a′ b′

t ′a′ t ′b′

]
, B12 = cE21 and B21 = b′E12, as well as B12 = cE21 and

B21 = c′E21, similar to the above arguments, we can show B12 and B21 ∈ M2(R).
Consequently, we conclude that Φ(E12) and Φ(E21) ∈ M2(R) from the above proofs.
In the following, we show that Φ(E11) and Φ(E22) are also real matrices.
Let

Φ(E11) = B11 =

[
a′′ b′′

c′′ d′′

]
.

Note that B12 and B21 ∈ M2(R), so we can write B11 −B12 +B21 as[
a′′+ x11 b′′+ x12
c′′+ x21 d′′+ x22

]
,

where x11, x12, x21, and x22 ∈ R.
Apply Lemma 2.3 (3) to E11 −E12 +E21, then σl(E11 −E12 +E21) is an infinite set and its elements are

of the same modulus and real part. Since Φ(E11 −E12 +E21) = B11 −B12 +B21 and

σl(E11 −E12 +E21)) = σl(B11 −B12 +B21),

we also have that σl(B11 −B12 +B21) is an infinite set and its elements are of the same modulus and real
part. Again apply Lemma 2.3 (3) to B11 −B12 +B21, then a′′, b′′, c′′, and d′′ ∈ R. Thus Φ(E11) ∈ M2(R).

Similar to the proof of Φ(E11) ∈ M2(R), we can show Φ(E22) ∈ M2(R).
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Let A = (ai j) ∈ M2(C), note that Φ is a right quaternion linear map and Φ(Ei j) ∈ M2(R) for i, j = 1, 2,
then Φ(A) ∈ M2(C). The proof is complete. �

By Lemma 2.2 and 2.4, the following lemma 2.5 is valid.

Lemma 2.5. Let Φ be a right quaternion linear map from M2(H) into itself. If σl(A) = σl(Φ(A)) for all
A ∈ M2(H), then σp(A) = σp(Φ(A)) for all A ∈ M2(C).

Lemma 2.6. Let X ,Y ∈ M2(C) with matrix representations

X =

[
x11 x12
x21 x22

]
, Y =

[
y11 y12
y21 y22

]
.

If σl(A) = σl(XAY ) for all A = tE12 + sE21 ∈ M2(C), then

x11y21, x11y22, x21y21, x21y22, x12y11, x12y12, x22y11, and x22y21 ∈ R.

Proof. By simple computation, then

XAY =

[
x12sy11 + x11ty21 x12sy12 + x11ty22
x22sy11 + x21ty21 x22sy12 + x21ty22

]
.

Take s = 1 and t = −1, then A = E21 −E12. By Lemma 2.3 (3), then σl(A) is an infinite set and its
elements are of the same modulus and real part. Note that the assumption σl(A) = σl(XAY ), and again
apply Lemma 2.3 (3) to σl(XAY ), then

x12y11 − x11y21 ∈ R, x12y12 − x11y22 ∈ R,
x22y11 − x21y21 ∈ R, x22y12 − x21y22 ∈ R. (1)

Take s = 1 and t =−2, similar to the above arguments, we can show

x12y11 −2x11y21 ∈ R, x12y12 −2x11y22 ∈ R,
x22y11 −2x21y21 ∈ R, x22y12 −2x21y22 ∈ R. (2)

With equalities (1) and (2), by simple computation, we can imply that Lemma 2.6 holds. �
Lemma 2.7. Let X ∈ M2(C) be invertible. If σl(A) = σl(XAX−1) for all A = tE12 + sE21 ∈ M2(C) and
A = diag(s, t) ∈ M2(C), then there exist θ ∈ [0,2π) and an invertible matrix B ∈ M2(R) such that X = eiθ B.

Proof. Note that X ∈ M2(C) is invertible, let

X =

[
x11 x12
x21 x22

]
, X−1 =

[
y11 y12
y21 y22

]
.

Since A = diag(s, t) ∈ M2(C), by simple computation, one has

XAX−1 =

[
x11sy11 + x12ty21 x11sy12 + x12ty22
x21sy11 + x22ty21 x21sy12 + x22ty22

]
.

Take s = 1, t = 0, by Lemma 2.3 (1), then σl(A) = {0, 1}. Since

Xdiag(1, 0)X−1 ∈ M2(C) and σl(A) = σl(XAX−1),

by Lemma 2.3 (4), we have σp(XAX−1) = {0, 1}. Hence, trC(XAX−1) = 1, that is

x11y11 + x21y12 = 1. (3)
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Take s = 0, t = 1, similar to the above arguments, we have

x12y21 + x22y22 = 1. (4)

Since XX−1 = E, by simple computation, one has

x11y11 + x12y21 = 1 and x21y12 + x22y22 = 1. (5)

By equalities (3), (4), and (5), then

x12y21 = x21y12 and x11y11 = x22y22. (6)

Note that X ∈ M2(C), then there exist θi j ∈ [0,2π), i, j = 1, 2, such that

x11 = |x11|eiθ11 , x12 = |x12|eiθ12 ,
x21 = |x21|eiθ21 , x22 = |x22|eiθ22 .

(7)

Case 1. x11x12x21x22 ̸= 0.
Since x11x12x21x22 ̸= 0, note that X ∈ M2(C) and the assumption σl(A) = σl(XAX−1) for every

A = tE12 + sE21 ∈ M2(C), by Lemma 2.6 and equality (7), we can imply that there exist a21, a′21, a22,
a′22, b11, b′11, b12, and b′12 ∈ R such that

y11 = b11e−iθ12 = b′11e−iθ22 ,
y12 = b12e−iθ12 = b′12e−iθ22 .

(8)

y21 = a21e−iθ11 = a′21e−iθ21 ,
y22 = a22e−iθ11 = a′22e−iθ21 .

(9)

By equalities (3) and (4), then y11 ̸= 0 or y12 ̸= 0; moreover, y21 ̸= 0 or y22 ̸= 0. Using equalities (9) and
(8), one has

θ11 = θ21 or θ11 ±π = θ21, (10)

θ12 = θ22 or θ12 ±π = θ22. (11)

In addition, by equalities (4), (7), and (9), then

|x12|a21ei(θ12−θ11)+ |x22|a22ei(θ22−θ11) = 1.

Combining the above equality with equality (11), we obtain that

θ11 = θ12 or θ11 ±π = θ12. (12)

Let θ = θ11, by equalities (10), (11), and (12), then X is one of the following matrices

eiθ
[
|x11| |x12|
|x21| |x22|

]
, eiθ

[
|x11| −|x12|
|x21| −|x22|

]
,

eiθ
[
|x11| |x12|
|x21| −|x22|

]
, eiθ

[
|x11| −|x12|
|x21| |x22|

]
,

eiθ
[
|x11| |x12|
−|x21| |x22|

]
, eiθ

[
|x11| −|x12|
−|x21| −|x22|

]
,

eiθ
[
|x11| |x12|
−|x21| −|x22|

]
, eiθ

[
|x11| −|x12|
−|x21| |x22|

]
.

Consequently, there are invertible matrices B ∈ M2(R) and θ ∈ [0,2π) such that X = eiθ B.
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Case 2. x11x12x21x22 = 0.
(a) When x11 = 0. By equalities (3) and (5), then

x21y12 = x12y21 = 1. (13)

By equalities (13) and (7), then there exist c12 and c21 ∈ R such that

y12 = c12e−iθ21 and y21 = c21e−iθ12 .

By equality (13), then x12 ̸= 0, y12 ̸= 0. In terms of Lemma 2.6, we have x12y12 ∈R. So there exists c′12 ∈R
such that y12 = c′12e−iθ12 . Note that y12 = c12e−iθ21 and y12 ̸= 0, then

θ12 = θ21 or θ12 ±π = θ21. (14)

Since x11 = 0, by equality (6), one has x22y22 = 0. By Lemma 2.6, we know x22y21 ∈R. If x22 ̸= 0, then
there exists c′21 ∈ R such that y21 = c′21e−iθ22 . Since y21 = c21e−iθ12 and y21 ̸= 0, we have

θ12 = θ22 or θ12 ±π = θ22. (15)

If x22 = 0, write x22 = 0eiθ12 . Consequently, let θ = θ12, by equalities (7), (14), and (15), then X is one of
the following matrices

eiθ
[

0 |x12|
|x21| |x22|

]
, eiθ

[
0 |x12|
|x21| −|x22|

]
,

eiθ
[

0 |x12|
−|x21| −|x22|

]
, eiθ

[
0 |x12|
−|x21| |x22|

]
.

Hence, there are invertible matrices B ∈ M2(R) and θ ∈ [0,2π) such that X = eiθ B.
(b) When x22 = 0. Similar to the proof of Case (a), we can show that there are invertible matrices

B ∈ M2(R) and θ ∈ [0,2π) such that X = eiθ B.
(c) When x12 = 0. By equalities (4), (6), and (7), then x11y11 = x22y22 = 1. Thus there exist d11 and

d21 ∈ R such that y11 = d11e−iθ11 and y22 = d22e−iθ22 . By Lemma 2.6, then x11y22 and x21y22 ∈ R. Hence
there exists d′

11 ∈ R such that y22 = d′
11e−iθ11 . Since y22 ̸= 0, one has

θ11 = θ22 or θ11 ±π = θ22. (16)

Note that x21y22 ∈ R, if x21 ̸= 0, then there exists d21 ∈ R such that y22 = d21e−iθ21 . Again using
y22 = d22e−iθ22 and y22 ̸= 0, then

θ21 = θ22 or θ21 ±π = θ22, (17)

if x21 = 0, write x21 = 0eiθ11 . Consequently, let θ = θ11, by equalities (7), (16), and (17), then X is of one
of the following forms:

eiθ
[
|x11| 0
|x21| |x22|

]
, eiθ

[
|x11| 0
−|x21| |x22|

]
,

eiθ
[
|x11| 0
−|x21| −|x22|

]
, eiθ

[
|x11| 0
|x21| −|x22|

]
.

Hence, there are invertible matrices B ∈ M2(R) and θ ∈ [0,2π) such that X = eiθ B.
(d) When x21 = 0. Analogous to the proof of Case (c), we can also show that there are invertible matrices

B ∈ M2(R) and θ ∈ [0,2π) such that X = eiθ B.
In conclusion, by the above arguments, the proof is completed. �
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Lemma 2.8. There exists A ∈ M2(H) such that σl(A) ̸= σl(AT ).

Proof. Let A be the same as that of [14, Example 7.3], that is

A =

[
1 i
j k

]
.

If Ax = 0, where x = (x1, x2)
T , by simple computation, then x = 0. Consequently, 0 /∈ σl(A). Take

y = (−i, k)T , then AT y = 0, we have 0 ∈ σl(AT ). Hence σl(A) ̸= σl(AT ). �

3. RIGHT LINEAR MAP PRESERVING THE LEFT SPECTRUM

With the preparations in Section 2, we prove the following Theorem 3.2. For convenience, we also list [7,
Theorem 3] as Lemma 3.1 in the following.

Lemma 3.1 ([7, Theorem 3]). Let Φ : Mn(C) → Mn(C) be a linear map, then σp(A) = σp(Φ(A)) for all
A ∈ Mn(C) if and only if there exists an invertible matrix X ∈ Mn(C) such that

Φ(A) = XAX−1 or Φ(A) = XAT X−1.

Theorem 3.2. Let Φ be a right quaternion linear map from M2(H) into itself. Then σl(A) = σl(Φ(A)) for
all A ∈ M2(H) if and only if there exists an invertible matrix B ∈ M2(R) such that Φ(A) = BAB−1.

Proof. The sufficiency follows from Lemma 2.1. In the following, we prove the necessity of Theorem 3.2.
If σl(A) = σl(Φ(A)) for all A ∈ M2(H), by Lemma 2.5, we imply that

σp(A) = σp(Φ(A))

for all A ∈ M2(C). By Lemma 3.1, then there exists an invertible matrix X ∈ M2(C) such that

Φ(A) = XAX−1 or Φ(A) = XAT X−1

for all A ∈ M2(C).
Case 1. If Φ(A) = XAX−1 for all A ∈ M2(C).
Since X ∈ M2(C) and σl(A) = σl(XAX−1) for all A ∈ M2(H), by Lemma 2.7, we imply that there exist

invertible matrices B ∈ M2(R) and θ ∈ [0,2π) such that X = Beiθ . Note that Φ is a right quaternion linear
map; moreover, A ∈ M2(H) can be uniquely expressed as A = A1 +A2 j, where A1 and A2 ∈ M2(C), then

Φ(A) = Φ(A1)+Φ(A2) j = XA1X−1 +XA2X−1 j. (18)

Note that B is a real matrix, then B−1 j = jB−1. Since X = eiθ B, A1,A1 ∈ M2(C), by equality (18), we
have

Φ(A) = BA1B−1 +BA2B−1 j = B(A1 +A2 j)B−1 = BAB−1.

Case 2. If Φ(A) = XAT X−1 for all A ∈ M2(C).
Let X−1 = Y , then σl(A) = σl(Φ(A)) = σl(XATY ) for all A ∈ M2(C). Hence, σl(A) = σl(XATY )

for all A = tE12 + sE21 ∈ M2(C) and A = diag(s, t) ∈ M2(C). Since tE12 + sE21 = (tE12 + sE21)
T and

diag(s, t) = diag(s, t)T , by Lemma 2.6 and 2.7, we obtain that there exist invertible matrices B ∈ M2(R) and
θ ∈ [0,2π) such that X = eiθ B. Similar to Case 1, we can show that

Φ(A) = BAT
1 B−1 +BAT

2 B−1 j = B(AT
1 +AT

2 j)B−1 = BAT B−1 (19)

for all A = A1 +A2 j, where A1 and A2 ∈ M2(C). Since B is an invertible real matrix, moreover, σl(A) =
σl(Φ(A)) for all A ∈ M2(H), by equality (19) and Lemma 2.1, we have

σl(A) = σl(AT )

for every A ∈ M2(H). By Lemma 2.8, a contradiction is yielded. Hence Case 2 is impossible to arise.
By the above arguments, the proof is completed. �
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4. CONCLUSIONS

We have studied the problem of a right linear map preserving the left spectrum of 2×2 quaternion matrices
and characterized the form of such map. By Lemma 3.1 and Theorem 3.2, it is easy to see that the form of
a right linear map preserving the left spectrum of 2×2 quaternion matrices is not analogous to the classical
results of the linear map preserving eigenvalues of n× n complex matrices for n ≥ 2. By Lemma 2.1 and
Theorem 3.2, we conjecture that, for n > 2, the right quaternion linear map Φ preserves the left spectrum of
n×n quaternion matrices if and only if there exists an invertible n×n real matrix X such that Φ(A) =XAX−1

for every n×n quaternion matrix A. This will be dealt with in future works.
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Kvaternioonide (2×2)-maatriksite vasakspektrit säilitavad parempoolsed lineaarsed
kujutused

Deyu Duan, Xiang Gong, Geng Yuan ja Fahui Zhai

On kirjeldatud kvaternioonide (2×2)-maatriksite ruumi parempoolsed lineaarsed kujutused, mis säilitavad
kõigi kvaternioonide (2×2)-maatriksite vasakspektrid. Saadud kirjeldus erineb klassikalisest tulemusest
samalaadsele probleemile komplekssete maatriksite jaoks.


