
1. INTRODUCTION
1

The goal of reinforcement learning is to map from states to

actions in order to maximize a reward or achieve a goal.

Unlike supervised learning problems where each instance

with a correct label is given to the learner, the reinforcement

learning agent has to try and discover which optimum state­

action sequences will yield the best performance for the

desired task. At each time step, the agent perceives the

current state and takes an action accordingly. In return, the

environment transits to a new state based on the agent’s

action and provides an immediate reward or a one­time

reward until the final time step. Since actions of the agent

affect not only the reward but also the future state, all these

pose the challenge of developing efficient and effective

algorithms for reinforcement learning problems.

Q­learning is a well­known reinforcement learning

algorithm that the agent learns to act optimally in order to

successively approximate the action­value function [1].

The action­value is defined as the sum of the received

reward for taking a particular action at a particular state

and the expected future reward thereafter. It is desirable

for the agent to try all actions in all states sufficiently

under some exploration scheme. The strength of Q­

learning is that it does not require any model of the

environment to perform iterative updates and it has been

proved that Q­learning converges with probability one. In

reinforcement learning tasks, reward not only defines the

objective but also formulates the decision­making process.

A properly chosen reward can guide the agent towards

desired behaviours, on the contrary, a poorly chosen

reward may cause the agent to fail the learning process or

move away from the objective [2,3]. Reward schemes, in

general, can be classified into two categories including

Proceedings of the Estonian Academy of Sciences,
2020, 69, 3, 186–196

https://doi.org/10.3176/proc.2020.3.02

Available online at www.eap.ee/proceedings

Empirical explorations of strategic reinforcement learning:

a case study in the sorting problem

Ching­Sheng Lina*, Jung­Sing Jwoa,b, Cheng­Hsiung Leea, and Ya­Ching Loa

a Master Program of Digital Innovation, Tunghai University, Taichung 40704, Taiwan
b Department of Computer Science, Tunghai University, Taichung 40704, Taiwan

Received 14 November 2019, accepted 14 April 2020, available online 4 June 2020

© 2020 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution­

NonCommercial 4.0 International License (http://creativecommons.org/licenses/by­nc/4.0/).

Abstract. Recent advances in deep learning and reinforcement learning have made it possible to create an agent that is capable of

mimicking human behaviours. In this paper, we are interested in how the reinforcement learning agent behaves under different

learning strategies and whether it is able to complete the task similar to human performance in principle. To study the effect of

different reward types, two reward schemes which include immediate reward and pure­delayed reward are introduced. To build a

more human­like agent when interacting with the environment, we propose a goal­driven design that forces the agent to achieve a

level close to human ability and a training mechanism that learns only from good trajectories. Q­learning is one of the most popular

reinforcement learning algorithms and we employ it for our study. As the sorting problem is a classical topic in theoretical computer

science with widespread applications, it is used for the empirical evaluation. We compare our results against the algorithmic

solutions.

Key words: reinforcement learning, Q­learning, reward schemes, goal­driven design, good trajectories, sorting problem.

* Corresponding author, cslin612@thu.edu.tw

COMPUTER
SCIENCE

immediate reward and pure­delayed reward although

some tasks fall in between these two extremes [4]. In the

class of immediate reward problems, the environment

assigns a value to each action taken at a particular state.

The card game snap is an example of this type. In the case

of pure­delayed problems, the agent will not receive any

rewards for every step of the action but there will be a

reward given at the end to indicate a success or a failure.

Playing the board game, backgammon, is an example that

can be characterized as a pure­delayed problem.

The convergence time of reinforcement learning is a

serious concern and developing methods for speeding it up

is important. For example, if the game level is too hard,

directly learning from the most difficult level may take a

long time [5]. Shaping is the idea, originated from

behaviourist psychology, to reduce the learning curve for

goal­directed exploration and fast training [6,7]. It

gradually increases the complexity of the task, so that the

agent is allowed to learn easier versions of the task first

and use the obtained skills to accelerate learning while the

tasks become progressively harder. The learning from Easy

Missions mechanism is one of the shaping methods to

make the robot deal with easier situations at the early

stages and later on navigate in more difficult situations [8].

The main aim of this paper is to explore the use of

reinforcement learning to improve the average per ­

formance empirically for the problem with already known

complexity. Learning from good trajectories can make the

agent mimic good experiences and lower the com ­

putational costs by updating the parameters for those

successful cases only. The goal­driven design allows our

explicit goals to be exercised gradually. We propose a

training method combining the good trajectories adoption

and goal­driven design to balance the speed of con ­

vergence time and the quality of results. In addition, since

the choice of reward is considered one of the major

influences on the quality of policies solved by re ­

inforcement learning, we use two extremes (immediate

reward and pure­delayed reward) to investigate how they

will affect the timeliness and accuracy of the training task.

Sorting, a fundamental data operation, has been applied

to many computing tasks and has already attracted

intensive interest since its introduction. Among all

comparison­based sorting algorithms, the performance

cannot be better than 𝑂(𝑛 𝑙og 𝑛) in the average or worst

case. To illustrate our approach and to lay the groundwork,

we consider the sorting task in which an agent is asked to

perform under the designated strategies. The remainder of

this paper is organized as follows. Section 2 reviews the

related work of this paper. Section 3 describes our

approach and detailed strategies over which the agent

operates. Experimental results are presented and discussed

in Section 4. In Section 5, we summarize conclusions and

future work.

2. RELATED WORK

In the reinforcement­learning problem, an agent takes

sequential actions for the corresponding states of the

environment in an attempt to maximize a reward signal.

There are two main methods for solving such a problem,

model­based and model­free learning. Model­free ap ­

proaches directly learn the policy by the trial­and­error

interaction without modelling the behaviour of the

underlying environment whereas model­based approaches

learn to build an explicit model of the environment and

then compute the optimal policy relying on the derived

model [9]. The details of the model­based approaches are

out of the scope of this study and their reviews are omitted

for simplicity. There are various algorithms for model­free

approaches, but most are classified into one of two

families, either value­based methods or policy­based

methods, according to the goal of the training.

Value­based methods fit an optimized policy by

primarily learning a value function which includes the state

value function and the action value (Q­value) function

[10]. A state value function is used to determine the

expected reward the agent can receive in a given state

whereas an action value function is to assess how well the

agent performs an action for a given state [11]. Q­learning

[1] and SARSA [9] are two well­known and extensively

studied value­based methods. SARSA is an on­policy

algorithm which fits the Q­value to the current policy

depending only on the past states visited and actions taken.

On the other hand, Q­learning which is an off­policy

algorithm attempts to directly find the Q­value for the

optimal policy rather than the policy that was used to

generate the data. Because of using the maximum action

value to approximate the expected values of actions, Q­

learning is less robust due to overestimating the Q­value.

Double Q­learning, a double estimator method, is proposed

to use two estimators for uncoupling the selection and

evaluation of an action, so that it can eliminate the harm

caused by the overestimation in Q­learning [12]. In recent

years, deep learning methods have gained significant

attention and have been successfully applied to a wide

range of areas. It is, therefore, natural to adopt deep

learning methods for reinforcement learning problems as

the rich representation of the deep network could enable

the traditional reinforcement learning algorithms to

perform more effectively. A recent development is the

combination of the Convolutional Neural Network (CNN)

[13] and Q­learning to develop a reinforcement learning

agent called deep Q­networks (DQN) [14]. It has shown

to be effective in Atari games with large state­action spaces

and can achieve at or even beyond human level. An

extension of DQN is to replace the CNN layers with Long

Short­Term Memory networks [15] to address especially

for the Partially­Observable Markov Decision Process

C.-S. Lin et al.: Exploration of strategic reinforcement learning 187

(POMDP). The resulting deep recurrent Q­Network [16]

is capable of integrating information over time such that it

shows similar performance on Atari games but exhibits

better performance on POMDP domains. Similarly, there

are also versions of double SARSA [12] and deep SARSA

[17].

In contrast to value­based methods, policy­based

methods try to learn the policy directly instead of

maintaining the state/action value function to select the

best action accordingly. In practice, the policy is

represented explicitly by a parametric probability distri ­

bution π
θ
(𝑎|𝑠) such that action 𝑎 is chosen in state 𝑠 based

on the current policy. The objective is to update the

parameter θ over the time in order to derive the optimal

policy π∗ and obtain the largest reward [18]. A major

advantage of such methods is their capability of handling

large action spaces or continuous action spaces by

computing the probability for each action or learning the

probability distribution [11]. The REINFORCE algorithm,

a well­known policy gradient algorithm, uses Monte Carlo

sampling to update the parameter θ via gradient ascent [1].

A natural policy gradient which refers to the steepest

descent direction is proposed to replace the gradient with

the natural gradient for the purpose of speeding learning

[19].

Actor­critic methods combine the advantages of

valued­based methods and policy­based methods to

optimize both the policy and the value function where the

actor refers to the learnt policy and the critic to the learned

value function. Since the gradient of policy­based

methods is usually estimated by simulation, this may

result in high variance and make the algorithm converge

too slowly. Adding a critic will not only reduce the

variance but also deliver faster convergence [20,21].

Building on top of the traditional actor­critic model,

Advantage Actor­Critic (A2C) develops an advantage

function to evaluate the policy instead of using the value

function [22]. An advantage function represents a relative

action value defined by the difference between the action

value function and state value function (i.e., 𝐴π(𝑠, 𝑎) =
Qπ(𝑠, 𝑎) – 𝑉π(𝑠)). It is used to capture how better an action

is compared to the average performance of the policy at a

given state in terms of the expected reward [23].

Asynchronous Advantage Actor­Critic (A3C) is an

asynchronous version of A2C. The A3C algorithm has

multiple actors executing different policies to stabilize

training in parallel as more actors are allowed for more

exploration. Moreover, although deep reinforcement

learning algorithms based on experience replay have

achieved success in many challenging domains, asyn ­

chronous update in A3C is able to efficiently reduce

memory and computation cost per real interaction [24].

Although Convolutional Neural Networks have

gained significant popularity and success, most usable

network architectures heavily depend on expert

knowledge and experience. A meta­modelling algorithm

based on reinforcement learning, MetaQNN, is trained

to search connections between convolution, pooling, and

fully connected layers through an ε­greedy Q­learning

strategy with experience replay [25]. MetaQNN is able

to yield good performance on small datasets such as

CIFAR­10 but is computationally expensive for big

datasets due to the search of a huge space. To address

this issue, a block­wise network generation pipeline,

BlockQNN, automatically designs the network archi ­

tecture using a fast Q­learning framework where the

state 𝑠 represents the status of the current layer and the

action 𝑎 is the decision for the next successive layer

[26]. The focus of BlockQNN is switched to learn the

entire topological structure of network blocks to

improve the performance rather than designing the

entire network. Since on­policy and off­policy tech ­

niques have their own advantages, recent methods have

been developed to make use of both on­policy and off­

policy learning. While policy gradient methods offer

stable learning but require collection of large amounts

of on­policy experiences, an approach combining policy

gradient and Q­learning (PGQ) is proposed to take

advantage of off­policy data by drawing experience

from a replay buffer [27]. The PGQ approach achieves

better performance than DQN and A3C on Atari games.

Q­Prop is a sample­efficient policy gradient method

which trains an off­policy Q critic as a general control

variate to reduce on­policy gradient variance by using

Taylor expansion [28]. In addition to the improvement

of sample efficiency compared to state­of­the­art policy

gradient methods, Q­Prop has outperformed other actor­

critic techniques in humanoid locomotion tasks. Among

the existing imitation learning methods, Deep Q­

learning from Demonstrations (DQfD) is proposed to

pre­train the network in DQN by leveraging small sets

of demonstration data from a human expert and includes

a margin loss which encourages the expert’s actions to

have higher Q­values than other actions [29]. Once the

pre­training is completed, the agent starts to interact

with the environment and explores a much larger state

space. The experiments are conducted on 42 Atari

games and DQfD achieves state­of­the­art results for 11

games.

Compared to prior studies, we are more interested in

guiding the reinforcement learning to quickly reach the

task. Our novel goal­driven design gradually relaxes the

constraints imposed on the agent and forces it to achieve

close to human ability level. Moreover, to speed up the

convergence time, the goal­driven design is also

accompanied with a training mechanism that learns only

from good trajectories so as to reduce the computational

costs for updating the parameters.

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 186–196188

3. METHODOLOGY

In this section, we illustrate our approach with a case study

in the sorting problem and present an algorithm for learning

from good trajectories. The sorting task is characterized as

a reinforcement learning process and our proposed learning

technique is considered as an agent to sort the list. At each

time step 𝑡, the agent observes state 𝑠𝑡 representing the

current sorting result of the given list and takes an action to

exchange the values in the positions 𝑖 and 𝑗. After

performing an action, the agent may receive an immediate

reward to assess the action or the reward may be delayed.

3.1. Q­learning

Q­learning, a form of model­free reinforcement learning,

was proposed for Markov decision processes [1]. It

directly provides agents with the capability of learning to

act optimally for pairs of states and actions without relying

on an explicit model of the Markov process. The core of

the algorithm is a Q­value iteration derived from the

Bellman Equation [30] given by

 (1)

value of the next possible state by choosing optimal action

a to maximize the value. However, the above greedy

method with pure exploitation (i.e., to choose the action

yielding the highest value) may potentially cause the agent

to run into local optima quickly. Therefore, the agent need

to be capable of incorporating exploration (i.e., to select an

action which may not be the optimum for the given state).

In practice, ε­greedy is often the first choice to balance the

trade­off between exploitation and exploration [31].

In this study, we apply Q­learning as our base reinforce ­

ment learning algorithm in the sorting problem. The state

is defined as a list of numbers. For the task of sorting six

numbers, there will be 720 states in total. The action is to

denote the swap of values in position 𝑖 and position 𝑗. Thus,

there are 15 actions to sort six numbers. The Q­learning

algorithm calculates a Q­value based on the current sorting

result (i.e., state) and the exchange of two numbers (i.e.,

action). This Q­value indicates the expected values the

agent may receive by selecting the action.

3.2. Rewards

In reinforcement learning, the goal of a task is

characterized in terms of the rewards and the agent utilizes

the received reward as a guidance to produce suitable

behaviours. An agent’s ultimate objective is to maximize

the expected cumulative reward it receives over time

instead of focusing on the short­term rewards while

interacting with its environment. The reward at each time

step t is denoted as and its cumulative reward is defined

as

 (2)

The formulation of the cumulative reward may be

problematic for continuing tasks because it could diverge

to infinity. Moreover, all rewards are equally considered,

no matter how far away in the future they are. The

discount factor, is introduced to prevent the cumulative

reward from increasing to infinity and control the weights

between future rewards against the current reward. The

discounted cumulative reward is defined as

 (3)

In the sorting problem, we consider two types of

rewards, immediate reward and pure­delayed reward. For

the immediate reward, a reward will be given at each time

step depending on whether the action improves the

number of items in the correct position. For example, if

the state of six numbers is ‘1,3,2,4,6,5’, where two

numbers are in the correct position, an action of swapping

two numbers results in ‘1,2,3,4,6,5’, where four numbers

are in the correct positions and the agent will receive a

positive reward. On the contrary, if the action causes the

ranking worse, a negative reward will be given. For the

pure­delayed reward scheme, a reward will only be

assigned at the end to indicate a successful or unsuccessful

sorting. The purpose of this design is to investigate

whether an immediate reward can reduce the number of

required trials or a pure­delayed reward could actually

reflect the long­term goal best by obtaining rewards in the

far future.

3.3. Goal­driven design

Although Reinforcement Learning has been used for

autonomous tasks, the prominence largely depends on

whether it can be scaled up to do larger and harder tasks.

Especially, learning to obtain a good performance in the

challenging tasks often takes a very long time. In this

paper, we propose a method based on relaxing the

constraints to approach the goal more rapidly and learn

from easier tasks. With relaxing the constraints currently

imposed on the agent, we give the learner more freedom

and less restriction to discover useful and effective

policies. What we do is essentially adjust the termination

condition to allow better execution in an attempt to

enhance success for the missions. Generally, it is

C.-S. Lin et al.: Exploration of strategic reinforcement learning 189

%&"! ' (!) * %&"! ' (!) + ,&-! + ./01
"

%&"!#$' () 2

%&"! ' (!))?))
!

@2!%!)%&"! ' (!)) $/) (2!) *1($&")#*.0!) ;0"1($&")&;) *) /(*(!<

1($&")-$%)&"! ' (!))*()($'!)/(!-)!?),)$/)(2!).!*%"$"3)%*(!?).

$/)(2!)+$/1&0"();*1(&%?)*"+)-!)$/)(2!)%!@*%+)#*.0!)&;)(*B$"3

1($&")(!) 3$#!") /((!) "!4)%&"!#$' ()) +!"&(!/) (2!) *1($&"

!

) 4! 56-!#$ + -!#% + -!#& +6778)) Q7R)
!

-!)

!

) 4! 56-!#$ + .-!#% + .
%-!#& +6778) QNR

?).?)

(

2%&"! ' (!))?)

 .

 .

applicable to know which learning condition is easier to

fulfil than others in order to reach the goal given that a

priori knowledge of the problem is available. In the

sorting problem, we consider the constraint on the number

of actions (i.e. swaps between two numbers) taken. We

initially put severe constrains on the problem and

gradually relax the constraints over the course of learning

until the goal is achieved or time runs out. Doing this has

the great merit of making the problem simpler by

increasing the allowed number of swaps.

3.4. Good trajectories

The agent learns to improve its skill from observable

histories called trajectories where each trajectory is a

state­action sequence of length h denoted as ⟨(𝑠
1
,𝑎

1
),

(𝑠
2
,𝑎

2
)…(𝑠h,𝑎

ℎ
)⟩. A good trajectory, in this study, is a

sequence in which the agent is able to reach the goal state

successfully within a predefined number of steps. By

contrast, if the agent does not finish the task promptly, we

consider it a bad trajectory. Although good trajectories

may not be the optimal solution and there is no guarantee

that learning from good trajectories will make the agent

have performance comparable to or better than that of an

expert, at least it is clear that the agent should try to imitate

those aspects of the teacher agents. On the contrary, bad

trajectories are even more ambiguous because it is not

obvious and sometimes difficult to differentiate whether

the entire trajectory was wrong or some parts of the

trajectory were correct.

Figure 1 shows the flowchart of our training process.

The input of the algorithm is a training set (denoted as

Training_Set) which is randomly selected from 𝑛! lists

where each training sample contains the state and

constraint. At each iteration, the agent will interact with

the training sample to perform the sorting task. If the

training sample is unable to be sorted, we will relax the

constraint of the sample as described in the previous

section and save the sample into the replay set (denoted

as Replay_Set) without updating the Q­table; otherwise,

the sample will be removed from the Training_Set and the

Q­table will get updated. At the end of each iteration,

elements in the Replay_Set will be the new target training

samples. The training process keeps iterating until all

training samples have been trained successfully.

4. EXPERIMENT AND RESULTS

In order to determine the efficacy of our proposed

approach, a case study in the sorting problem is presented.

We conducted a series of experiments to observe the

performance under the learning configurations as well as

to compare the results with other algorithmic solutions.

4.1. Experimental setup

We construct two experimental tasks that aim at

evaluating our learning strategies to sort 𝑛 numbers. The

first task is to apply two reward schemes, which is

specified in Subsection 3.2 on the sorting problem with

loose constraints. A Q­learning agent is asked to reach the

goal state within 𝑛2 actions. Given a training sample (i.e.

a list of numbers), we are interested in the number of

episodes that the agent can approach a 90% successful rate

for the latest 100 episodes. This task is designed to assess

the effect on the different reward schemes. For the second

task, the agent is expected to interact with the environment

based on the training flowchart in Fig. 1. We start this task

with a strict constraint that the agent is required to finish

sorting within 𝑛 actions. Given a training example, we are

interested whether the agent can have a 90% successful

rate for the latest 100 episodes within 45 000 episodes. If

the agent is able to fulfil the requirement, we will update

the Q­table and remove this training example from the

training set; otherwise, the Q­table will stay unchanged

and the constraint will be relaxed to 𝑛+1 actions at the

next iteration. The goal of this task is to investigate the

feasibility about forcing the agent to learn from good

trajectories and easier missions. In the next section, we

explain our performance according to the designated tasks

and compare our results to Quicksort.

4.2. Experimental results

To evaluate our approach, we employ the proposed Q­

learning agent to sort 𝑛! lists where each list is a per mutation

of 𝑛 numbers. As a case study, we demonstrate our results

for 𝑛 equal to 6, 7, and 8. In the training step for both tasks

described in Subsection 4.1, we randomly select 40 lists

as our training set for each value of 𝑛.

For the first task, we illustrate the number of training

steps needed to take in order to sort each training example

within 𝑛2 actions for different values of 𝑛 across two

different reward schemes in Figs 2–4. We note that the

performance of immediate reward is significantly over

pure­delayed reward. The comparison of the average

training steps is outlined in Table 1. As 𝑛 increases, their

differences tend to increase progressively as well. For

𝑛 = 6, there are 6! = 720 states while it explodes to 40 320

states for 𝑛 = 8. So, even with large state spaces, the agent

is still able to reach an average of 𝑛2 actions to sort after

acceptable training steps. In this experiment, we keep

updating the Q­table no matter the agent fails or succeeds

in the sorting, i.e., we learn from both good and bad

experiences.

For the second task, the detailed training results at each

iteration based on the algorithm in Fig. 1 are reported in

Tables 2–4. We note that, in general, immediate reward

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 186–196190

C.-S. Lin et al.: Exploration of strategic reinforcement learning 191

Fig. 1. Training flowchart where the dashed rectangle represents the goal­driven design.

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 186–196192

Fig. 2. Distribution of the number of training steps for two reward schemes when 𝑛 = 6.

Fig. 3. Distribution of the number of training steps for two reward schemes when 𝑛 = 7.

pure­delayed reward immediate reward

pure­delayed reward immediate reward

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

 1800

 1600

 1400

 1200

 1000

800

 600

 400

 200

 0

 500

 450

 400

 350

 300

250

 200

 150

 100

 50

 0

requires a smaller number of iterations to finish the training

procedure except when 𝑛 = 6, where both immediate

reward and pure­delayed reward require four iterations.

For 𝑛 = 6 and given the immediate reward scheme, there

is only one list that requires 10 (i.e., 𝑛 + number of

iteration) actions to finish the training procedure. For

𝑛 = 7 and 𝑛 = 8 with the immediate reward scheme, all

40 lists can be trained to sort within 11 (i.e., 7 + 4) actions

and 13 (i.e., 8 + 5) actions, respectively.

To examine whether or not our approach offers support

for the empirical data when compared to the existing

solution, we assess our results against Quicksort. After the

training process, we conduct the experiments to sort 𝑛! lists

for 50 times while 𝑛 equals 6, 7, and 8. Table 5 displays

the comparative analysis of maximum and average for

C.-S. Lin et al.: Exploration of strategic reinforcement learning 193

Fig. 4. Distribution of the number of training steps for two reward schemes when 𝑛 = 8.

$

(+ H;&2632,'A23$&2.'&3$ I<<23('12$&2.'&3$

>$ J@>8@$ KK#8E$
E$ K">K8K$!K#8#$

F$ @LKL8#$ KJLE8>$

%

Table 1. The average training steps for two reward schemes

when 𝑛 equals 6, 7, and 8

I12&'1(-)$ H;&2632,'A23$&2.'&3$ I<<23('12$&2.'&3$

M;//244$ N'(,;&2$ M;//244$ N'(,;&2$

K$ KK$ JL$ K#$ J>$
J$ K!$ K>$ K!$ K!$

!$ K#$ J$ KJ$ K$

#$ J$ "$ K$ "$

$
$

Table 2. The number of training iterations for two reward

schemes when 𝑛 equals 6

I12&'1(-)$ H;&2632,'A23$&2.'&3$ I<<23('12$&2.'&3$

M;//244$ N'(,;&2$ M;//244$ N'(,;&2$

K$ K@$ J@$ K#$ J>$

J$ K!$ KJ$ K"$ K>$

!$ @$ E$ K!$!$

#$ #$!$!$ "$
@$ J$ K$ $ $

>$ K$ "$ $ $

$

Table 3. The number of training iterations for two reward

schemes when 𝑛 equals 7

$

I12&'1(-)$ H;&2632,'A23$&2.'&3$ I<<23('12$&2.'&3$

M;//244$ N'(,;&2$ M;//244$ N'(,;&2$

K$ KJ$ JF$ K!$ JE$
J$ E$ JK$ E$ J"$

!$ >$ K@$ KJ$ F$

#$ #$ KK$ #$ #$

@$ E$ #$ #$ "$
>$ K$!$ $ $

E$!$ "$ $ $

Table 4. The number of training iterations for two reward

schemes when 𝑛 equals 8

pure­delayed reward immediate reward

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

12 000

10 000

 8000

 6000

 4000

 2000

 0

 𝑛

Quicksort, pure­delayed reward, and immediate reward

given different values of 𝑛. From the aspect of average

performance, immediate reward achieves promising results

and it only needs less than half of the values obtained by

Quicksort for all cases of 𝑛. On average, it only takes 5.03

actions to sort six numbers, 6.67 actions to sort seven

numbers, and 9.18 actions to sort eight numbers. Although

pure­delayed reward did not yield a good average value

while attempting to sort six numbers, it still holds better

performance for sorting seven and eight numbers

compared to Quicksort. The detailed results of 50

experiments for 𝑛 equal to 6, 7, and 8 are shown in Fig. 5,

Fig. 6, and Fig. 7, respectively. In conclusion, our training

algorithm for both reward schemes is capable of improving

the behaviour by learning from good experiences and goal­

driven strategy despite its training overhead.

5. CONCLUSION AND FUTURE WORK

In this paper, we described in detail our learning method

that enables the reinforcement learning agent to improve

its behaviours. We introduced human­like strategies for

the agent to adopt while gaining experience with the

environment. Two different reward schemes (pure­

delayed reward and immediate reward) were chosen so as

to guide the learning process and access their impacts on

the training. As a result of our experiment, immediate

reward took much less steps to complete the training

process than pure­delayed reward. To shorten the learning

time and avoid unnecessary trial and error, we adopted

rapid and easy task learning by relaxing the constraints of

maximum allowable actions. To exploit and imitate past

good experiences, we propose to learn from good

trajectories in which the agent is able to reach the goal

state efficiently. Our case study was conducted on the

sorting problem. On average, the number of comparisons

for immediate reward is about half the number of

comparisons necessary for Quicksort. The empirical

results indicate that there is a substantial reduction in the

number of steps to solve the problem.

The future work is to investigate the selection of

training samples and evaluate its influence on the sorting

task. In our current approach, we randomly selected 40

lists as our training set without applying instance selection

techniques. We plan to study whether the property of

training samples influences the outcome of the training

and accuracy of the performance by considering the

difference of choosing between difficult states (i.e., most

digits are in the wrong positions) and easy states (i.e.,

most digits are in the correct positions) as the training

targets. Moreover, we will also investigate whether the

number of training samples has significant impact on

training processes, and deal with the automatic

determination of the number of training samples. Another

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 186–196194

$ @-90,7,$ A:')->'$

! " #$ $ $

B7)'C5';-D'5$)'4-)5$ EF!<FG$ EE<"H$

I,,'50-3'$)'4-)5$ EJ<GJ$ '()*&
670/81+)3$ E#$ E"<!$
$ $ $

! " $$ $ $

B7)'C5';-D'5$)'4-)5$ JK<L$ E"<EL$

I,,'50-3'$)'4-)5$!"<#G$ +(+,&
670/81+)3$ FE$ E!<GL$

$ $ $

! " %$ $ $

B7)'C5';-D'5$)'4-)5$ EFH<!J$ EE<JJ$
I,,'50-3'$)'4-)5$ GH<LH$ -(./&
670/81+)3$ FJ$ F"<GL$

$

$
$

Table 5. The performance comparison between two reward

schemes and Quicksort for 50 experiments of different values

of 𝑛. From the aspect of average performance, the immediate

reward approach achieves the best results which are highlighted

in bold

Fig. 5. Detailed results of maximum (a) and average (b) values to sort 6! lists for 50 times regarding pure­delayed reward, immediate

reward, and Quicksort.

(a) (b)
 maximum average

pure­delayed reward immediate reward Quicksort pure­delayed reward immediate reward Quicksort

 The index of experiments The index of experiments

T

h
e

n
u

m
b

er
 o

f
ac

ti
o

n
s

T

h
e

n
u

m
b

er
 o

f
ac

ti
o

n
s

 6

 7

 8

avenue of future work is to improve the efficiency of the

training process. As we can see from Table 1, it takes more

than 1000 training steps to complete the training task for 𝑛

equal to 8 with loose constraints (𝑛2 actions). It would be

necessary to accelerate learning in order to handle larger 𝑛.

Transfer learning has been used to speed up learning

through the adaptation of previously learned behaviours by

the inter­task mapping. In the sorting problem, instead of

randomly initializing weights for larger 𝑛, we will explore

its state similarity with previously learned tasks and

initialize its action­value by leveraging the knowledge

from prior learned and similar states.

ACKNOWLEDGEMENT

The publication costs of this article were partially covered

by the Estonian Academy of Sciences.

REFERENCES

1. Watkins, C. J. C. H. and Dayan, P. Q­learning. Mach. Learn.,
1992, 8(3–4), 279–292.

2. Ng, A. Y. and Jordan, M. I. Shaping and Policy Search in
Reinforcement Learning. University of California, Berkeley,

2003.

3. Devlin, S. and Kudenko, D. Theoretical considerations of

potential­based reward shaping for multi­agent systems. In

The 10th International Conference on Autonomous Agents
and Multiagent Systems, Volume 1, 2011, 225–232.

4. Gaskett, C. Q-Learning for Robot Control. Australian

National University, 2002.

5. Andrade, G., Ramalho, G., Santana, H., and Corruble, V.

Extending reinforcement learning to provide dynamic game

balancing. In Proceedings of the Workshop on Reasoning,
Representation, and Learning in Computer Games, 19th
International Joint Conference on Artificial Intelligence
(IJCAI) (Aha, D. W., Muñoz­Avila, H., and van Lent, M.).

Edinburgh, Scotland, 2005, 7–12.

C.-S. Lin et al.: Exploration of strategic reinforcement learning 195

Fig. 6. Detailed results of maximum (a) and average (b) values to sort 7! lists for 50 times regarding pure­delayed reward, immediate

reward, and Quicksort.

(a) (b)

Fig. 7. Detailed results of maximum (a) and average (b) values to sort 8! lists for 50 times regarding pure­delayed reward, immediate

reward, and Quicksort.

(a) (b)
 maximum

 maximum
 average

 average

 The index of experiments
 The index of experiments

 The index of experiments The index of experiments

pure­delayed reward immediate reward Quicksort
pure­delayed reward immediate reward Quicksort

pure­delayed reward immediate reward Quicksort
pure­delayed reward immediate reward Quicksort

T

h
e

n
u

m
b

er
 o

f
ac

ti
o

n
s

T

h
e

n
u

m
b

er
 o

f
ac

ti
o

n
s

T

h
e

n
u

m
b

er
 o

f
ac

ti
o

n
s

T

h
e

n
u

m
b

er
 o

f
ac

ti
o

n
s

6. Erez, T. and Smart, W. D. What does shaping mean for

computational reinforcement learning? In 2008 7th IEEE
International Conference on Development and Learning,
Monterey, California. IEEE, 2008, 215–219.

7. Konidaris, G. and Barto, A. Autonomous shaping: knowledge

transfer in reinforcement learning. In Proceedings of the 23rd
International Conference on Machine Learning (Cohen, W. W.

and Moore, A., eds). Association for Computing Machinery,

NY, 2006, 489–496.

8. Asada, M., Noda, S., Tawaratsumida, S., and Hosoda, K.

Purposive behavior acquisition for a real robot by vision­

based reinforcement learning. Mach. Learn., 1996, 23(2–3),

279–303.

9. Rummery, G. A. and Niranjan, M. On-Line Q-Learning
Using Connectionist Systems. Department of Engineering,

University of Cambridge, England, 1994.

10. Tangkaratt, V., Abdolmaleki, A., and Sugiyama, M. Guide

actor­critic for continuous control. 2017, arXiv:1705.07606.

11. Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. The MIT Press, USA, 2011.

12. Hasselt, H. V. Double Q­learning. In Advances in Neural
Information Processing Systems (Lafferty, J. D.,

Williams, C. K. I., Shawe­Taylor, J., Zemel, R. S., and

Culotta, A., eds). 2010, 2613–2621.

13. Kim, Y. Convolutional neural networks for sentence

classification. 2014, arXiv:1408.5882.

14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing

Atari with deep reinforcement learning. 2013, arXiv:1312.

5602.

15. Hochreiter, S. and Schmidhuber, J. Long short­term

memory. Neural Comput., 1997, 9(8), 1735–1780.

16. Hausknecht, M. and Stone, P. Deep recurrent Q­learning for

partially observable MDPs. In 2015 AAAI Fall Symposium
on Sequential Decision Making for Intelligent Agents. 2015,

1–9.

17. Zhao, D., Wang, H., Shao, K., and Zhu, Y. Deep

reinforcement learning with experience replay based on

SARSA. In 2016 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2016, 1–6.

18. Sutton, R. S., McAllester, D. A., Singh, S. P., and

Mansour, Y. Policy gradient methods for reinforcement

learning with function approximation. In Advances in Neural
Information Processing Systems. 2000, 1057–1063.

19. Kakade, S. M. A natural policy gradient. In Advances in
Neural Information Processing Systems. 2002, 1531–1538.

20. Konda, V. R. and Tsitsiklis, J. N. On actor­critic algorithms.

SIAM J. Control Optim., 2003, 42(4), 1143–1166.

21. Marbach, P. and Tsitsiklis, J. N. Simulation­based

optimization of Markov reward processes. IEEE Trans.
Autom. Control, 2001, 46(2), 191–209.

22. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T.,

Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous

methods for deep reinforcement learning. In Proceedings of
the 33rd International Conference on Machine Learning.

2016, 1928–1937.

23. Arulkumaran, K., Deisenroth, M. P., Brundage, M., and

Bharath, A. A. A brief survey of deep reinforcement

learning. 2017, arXiv:1708.05866.

24. Schaul, T., Quan, J., Antonoglou, I., and Silver, D.

Prioritized experience replay. 2015, arXiv:1511.05952.

25. Baker, B., Gupta, O., Naik, N., and Raskar, R. Designing

neural network architectures using reinforcement learning.

2016, arXiv:1611.02167.

26. Zhong, Z., Yan, J., Wu, W., Shao, J., and Liu, C. L. Practical

block­wise neural network architecture generation. In

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2018, 2423–2432.

27. O’Donoghue, B., Munos, R., Kavukcuoglu, K., and Mnih, V.

PGQ: Combining policy gradient and Q­learning. 2016,

arXiv:1611.01626.

28. Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and

Levine, S. Q­Prop: Sample efficient policy gradient with an

off­policy critic. 2017, arXiv:1611.02247.

29. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T.,

Piot, B., et al. Deep Q­learning from demonstrations. In

Thirty-Second AAAI Conference on Artificial Intelligence.

2018, 3223–3230.

30. Dietterich, T. G. Hierarchical reinforcement learning with

the MAXQ value function decomposition. J. Artif. Intell.
Res., 2000, 13, 227–303.

31. Li, Y. Deep reinforcement learning: an overview. 2017,

arXiv:1701.07274.

Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 186–196196

