
1. INTRODUCTION 
1 

The goal of reinforcement learning is to map from states to 

actions in order to maximize a reward or achieve a goal. 

Unlike supervised learning problems where each instance 

with a correct label is given to the learner, the reinforcement 

learning agent has to try and discover which optimum state­

action sequences will yield the best performance for the 

desired task. At each time step, the agent perceives the 

current state and takes an action accordingly. In return, the 

environment transits to a new state based on the agent’s 

action and provides an immediate reward or a one­time 

reward until the final time step. Since actions of the agent 

affect not only the reward but also the future state, all these 

pose the challenge of developing efficient and effective 

algorithms for reinforcement learning problems. 

Q­learning is a well­known reinforcement learning 

algorithm that the agent learns to act optimally in order to 

successively approximate the action­value function [1]. 

The action­value is defined as the sum of the received 

reward for taking a particular action at a particular state 

and the expected future reward thereafter. It is desirable 

for the agent to try all actions in all states sufficiently 

under some exploration scheme. The strength of Q­

learning is that it does not require any model of the 

environment to perform iterative updates and it has been 

proved that Q­learning converges with probability one. In 

reinforcement learning tasks, reward not only defines the 

objective but also formulates the decision­making process. 

A properly chosen reward can guide the agent towards 

desired behaviours, on the contrary, a poorly chosen 

reward may cause the agent to fail the learning process or 

move away from the objective [2,3]. Reward schemes, in 

general, can be classified into two categories including 
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more human­like agent when interacting with the environment, we propose a goal­driven design that forces the agent to achieve a 

level close to human ability and a training mechanism that learns only from good trajectories. Q­learning is one of the most popular 

reinforcement learning algorithms and we employ it for our study. As the sorting problem is a classical topic in theoretical computer 

science with widespread applications, it is used for the empirical evaluation. We compare our results against the algorithmic 

solutions. 
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immediate reward and pure­delayed reward although 

some tasks fall in between these two extremes [4]. In the 

class of immediate reward problems, the environment 

assigns a value to each action taken at a particular state. 

The card game snap is an example of this type. In the case 

of pure­delayed problems, the agent will not receive any 

rewards for every step of the action but there will be a 

reward given at the end to indicate a success or a failure. 

Playing the board game, backgammon, is an example that 

can be characterized as a pure­delayed problem. 

The convergence time of reinforcement learning is a 

serious concern and developing methods for speeding it up 

is important. For example, if the game level is too hard, 

directly learning from the most difficult level may take a 

long time [5]. Shaping is the idea, originated from 

behaviourist psychology, to reduce the learning curve for 

goal­directed exploration and fast training [6,7]. It 

gradually increases the complexity of the task, so that the 

agent is allowed to learn easier versions of the task first 

and use the obtained skills to accelerate learning while the 

tasks become progressively harder. The learning from Easy 

Missions mechanism is one of the shaping methods to 

make the robot deal with easier situations at the early 

stages and later on navigate in more difficult situations [8]. 

The main aim of this paper is to explore the use of 

reinforcement learning to improve the average per ­

formance empirically for the problem with already known 

complexity. Learning from good trajectories can make the 

agent mimic good experiences and lower the com ­

putational costs by updating the parameters for those 

successful cases only. The goal­driven design allows our 

explicit goals to be exercised gradually. We propose a 

training method combining the good trajectories adoption 

and goal­driven design to balance the speed of con ­

vergence time and the quality of results. In addition, since 

the choice of reward is considered one of the major 

influences on the quality of policies solved by re ­

inforcement learning, we use two extremes (immediate 

reward and pure­delayed reward) to investigate how they 

will affect the timeliness and accuracy of the training task. 

Sorting, a fundamental data operation, has been applied 

to many computing tasks and has already attracted 

intensive interest since its introduction. Among all 

comparison­based sorting algorithms, the performance 

cannot be better than 𝑂(𝑛 𝑙og 𝑛) in the average or worst 

case. To illustrate our approach and to lay the groundwork, 

we consider the sorting task in which an agent is asked to 

perform under the designated strategies. The remainder of 

this paper is organized as follows. Section 2 reviews the 

related work of this paper. Section 3 describes our 

approach and detailed strategies over which the agent 

operates. Experimental results are presented and discussed 

in Section 4. In Section 5, we summarize conclusions and 

future work. 

2. RELATED  WORK  

 
In the reinforcement­learning problem, an agent takes 

sequential actions for the corresponding states of the 

environment in an attempt to maximize a reward signal. 

There are two main methods for solving such a problem, 

model­based and model­free learning. Model­free ap ­

proaches directly learn the policy by the trial­and­error 

interaction without modelling the behaviour of the 

underlying environment whereas model­based approaches 

learn to build an explicit model of the environment and 

then compute the optimal policy relying on the derived 

model [9]. The details of the model­based approaches are 

out of the scope of this study and their reviews are omitted 

for simplicity. There are various algorithms for model­free 

approaches, but most are classified into one of two 

families, either value­based methods or policy­based 

methods, according to the goal of the training. 

Value­based methods fit an optimized policy by 

primarily learning a value function which includes the state 

value function and the action value (Q­value) function 

[10]. A state value function is used to determine the 

expected reward the agent can receive in a given state 

whereas an action value function is to assess how well the 

agent performs an action for a given state [11]. Q­learning 

[1] and SARSA [9] are two well­known and extensively 

studied value­based methods. SARSA is an on­policy 

algorithm which fits the Q­value to the current policy 

depending only on the past states visited and actions taken. 

On the other hand, Q­learning which is an off­policy 

algorithm attempts to directly find the Q­value for the 

optimal policy rather than the policy that was used to 

generate the data. Because of using the maximum action 

value to approximate the expected values of actions, Q­

learning is less robust due to overestimating the Q­value. 

Double Q­learning, a double estimator method, is proposed 

to use two estimators for uncoupling the selection and 

evaluation of an action, so that it can eliminate the harm 

caused by the overestimation in Q­learning [12]. In recent 

years, deep learning methods have gained significant 

attention and have been successfully applied to a wide 

range of areas. It is, therefore, natural to adopt deep 

learning methods for reinforcement learning problems as 

the rich representation of the deep network could enable 

the traditional reinforcement learning algorithms to 

perform more effectively. A recent development is the 

combination of the Convolutional Neural Network (CNN) 

[13] and Q­learning to develop a reinforcement learning 

agent called deep Q­networks (DQN) [14]. It has shown 

to be effective in Atari games with large state­action spaces 

and can achieve at or even beyond human level. An 

extension of DQN is to replace the CNN layers with Long 

Short­Term Memory networks [15] to address especially 

for the Partially­Observable Markov Decision Process 
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(POMDP). The resulting deep recurrent Q­Network [16] 

is capable of integrating information over time such that it 

shows similar performance on Atari games but exhibits 

better performance on POMDP domains. Similarly, there 

are also versions of double SARSA [12] and deep SARSA 

[17]. 

In contrast to value­based methods, policy­based 

methods try to learn the policy directly instead of 

maintaining the state/action value function to select the 

best action accordingly. In practice, the policy is 

represented explicitly by a parametric probability distri ­

bution π
θ
(𝑎|𝑠) such that action 𝑎 is chosen in state 𝑠 based 

on the current policy. The objective is to update the 

parameter θ over the time in order to derive the optimal 

policy π∗ and obtain the largest reward [18]. A major 

advantage of such methods is their capability of handling 

large action spaces or continuous action spaces by 

computing the probability for each action or learning the 

probability distribution [11]. The REINFORCE algorithm, 

a well­known policy gradient algorithm, uses Monte Carlo 

sampling to update the parameter θ via gradient ascent [1]. 

A natural policy gradient which refers to the steepest 

descent direction is proposed to replace the gradient with 

the natural gradient for the purpose of speeding learning 

[19]. 

Actor­critic methods combine the advantages of 

valued­based methods and policy­based methods to 

optimize both the policy and the value function where the 

actor refers to the learnt policy and the critic to the learned 

value function. Since the gradient of policy­based 

methods is usually estimated by simulation, this may 

result in high variance and make the algorithm converge 

too slowly. Adding a critic will not only reduce the 

variance but also deliver faster convergence [20,21]. 

Building on top of the traditional actor­critic model, 

Advantage Actor­Critic (A2C) develops an advantage 

function to evaluate the policy instead of using the value 

function [22]. An advantage function represents a relative 

action value defined by the difference between the action 

value function and state value function (i.e., 𝐴π(𝑠, 𝑎) = 
Qπ(𝑠, 𝑎) – 𝑉π(𝑠)). It is used to capture how better an action 

is compared to the average performance of the policy at a 

given state in terms of the expected reward [23]. 

Asynchronous Advantage Actor­Critic (A3C) is an 

asynchronous version of A2C. The A3C algorithm has 

multiple actors executing different policies to stabilize 

training in parallel as more actors are allowed for more 

exploration. Moreover, although deep reinforcement 

learning algorithms based on experience replay have 

achieved success in many challenging domains, asyn ­

chronous update in A3C is able to efficiently reduce 

memory and computation cost per real interaction [24]. 

Although Convolutional Neural Networks have 

gained significant popularity and success, most usable 

network architectures heavily depend on expert 

knowledge and experience. A meta­modelling algorithm 

based on reinforcement learning, MetaQNN, is trained 

to search connections between convolution, pooling, and 

fully connected layers through an ε­greedy Q­learning 

strategy with experience replay [25]. MetaQNN is able 

to yield good performance on small datasets such as 

CIFAR­10 but is computationally expensive for big 

datasets due to the search of a huge space. To address 

this issue, a block­wise network generation pipeline, 

BlockQNN, automatically designs the network archi ­

tecture using a fast Q­learning framework where the 

state 𝑠 represents the status of the current layer and the 

action 𝑎 is the decision for the next successive layer 

[26]. The focus of BlockQNN is switched to learn the 

entire topological structure of network blocks to 

improve the performance rather than designing the 

entire network. Since on­policy and off­policy tech ­

niques have their own advantages, recent methods have 

been developed to make use of both on­policy and off­

policy learning. While policy gradient methods offer 

stable learning but require collection of large amounts 

of on­policy experiences, an approach combining policy 

gradient and Q­learning (PGQ) is proposed to take 

advantage of off­policy data by drawing experience 

from a replay buffer [27]. The PGQ approach achieves 

better performance than DQN and A3C on Atari games. 

Q­Prop is a sample­efficient policy gradient method 

which trains an off­policy Q critic as a general control 

variate to reduce on­policy gradient variance by using 

Taylor expansion [28]. In addition to the improvement 

of sample efficiency compared to state­of­the­art policy 

gradient methods, Q­Prop has outperformed other actor­

critic techniques in humanoid locomotion tasks. Among 

the existing imitation learning methods, Deep Q­

learning from Demonstrations (DQfD) is proposed to 

pre­train the network in DQN by leveraging small sets 

of demonstration data from a human expert and includes 

a margin loss which encourages the expert’s actions to 

have higher Q­values than other actions [29]. Once the 

pre­training is completed, the agent starts to interact 

with the environment and explores a much larger state 

space. The experiments are conducted on 42 Atari 

games and DQfD achieves state­of­the­art results for 11 

games. 

Compared to prior studies, we are more interested in 

guiding the reinforcement learning to quickly reach the 

task. Our novel goal­driven design gradually relaxes the 

constraints imposed on the agent and forces it to achieve 

close to human ability level. Moreover, to speed up the 

convergence time, the goal­driven design is also 

accompanied with a training mechanism that learns only 

from good trajectories so as to reduce the computational 

costs for updating the parameters. 
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3. METHODOLOGY 
 
In this section, we illustrate our approach with a case study 

in the sorting problem and present an algorithm for learning 

from good trajectories. The sorting task is characterized as 

a reinforcement learning process and our proposed learning 

technique is considered as an agent to sort the list. At each 

time step 𝑡, the agent observes state 𝑠𝑡 representing the 

current sorting result of the given list and takes an action to 

exchange the values in the positions 𝑖 and 𝑗. After 

performing an action, the agent may receive an immediate 

reward to assess the action or the reward may be delayed. 

 
3.1. Q­learning 

 
Q­learning, a form of model­free reinforcement learning, 

was proposed for Markov decision processes [1]. It 

directly provides agents with the capability of learning to 

act optimally for pairs of states and actions without relying 

on an explicit model of the Markov process. The core of 

the algorithm is a Q­value iteration derived from the 

Bellman Equation [30] given by 
 
 
 
  (1) 

value of the next possible state by choosing optimal action 

a to maximize the value. However, the above greedy 

method with pure exploitation (i.e., to choose the action 

yielding the highest value) may potentially cause the agent 

to run into local optima quickly. Therefore, the agent need 

to be capable of incorporating exploration (i.e., to select an 

action which may not be the optimum for the given state). 

In practice, ε­greedy is often the first choice to balance the 

trade­off between exploitation and exploration [31]. 

In this study, we apply Q­learning as our base reinforce ­

ment learning algorithm in the sorting problem. The state 

is defined as a list of numbers. For the task of sorting six 

numbers, there will be 720 states in total. The action is to 

denote the swap of values in position 𝑖 and position 𝑗. Thus, 

there are 15 actions to sort six numbers. The Q­learning 

algorithm calculates a Q­value based on the current sorting 

result (i.e., state) and the exchange of two numbers (i.e., 

action). This Q­value indicates the expected values the 

agent may receive by selecting the action. 

 

3.2. Rewards 

 
In reinforcement learning, the goal of a task is 

characterized in terms of the rewards and the agent utilizes 

the received reward as a guidance to produce suitable 

behaviours. An agent’s ultimate objective is to maximize 

the expected cumulative reward it receives over time 

instead of focusing on the short­term rewards while 

interacting with its environment. The reward at each time 

step t is denoted as      and its cumulative reward is defined 

as 
 
                                                                                     (2) 
 

The formulation of the cumulative reward may be 

problematic for continuing tasks because it could diverge 

to infinity. Moreover, all rewards are equally considered, 

no matter how far away in the future they are. The 

discount factor,     is introduced to prevent the cumulative 

reward from increasing to infinity and control the weights 

between future rewards against the current reward. The 

discounted cumulative reward is defined as 
 
                                                                                     (3) 

 

In the sorting problem, we consider two types of 

rewards, immediate reward and pure­delayed reward. For 

the immediate reward, a reward will be given at each time 

step depending on whether the action improves the 

number of items in the correct position. For example, if 

the state of six numbers is ‘1,3,2,4,6,5’, where two 

numbers are in the correct position, an action of swapping 

two numbers results in ‘1,2,3,4,6,5’, where four numbers 

are in the correct positions and the agent will receive a 

positive reward. On the contrary, if the action causes the 

ranking worse, a negative reward will be given. For the 

pure­delayed reward scheme, a reward will only be 

assigned at the end to indicate a successful or unsuccessful 

sorting. The purpose of this design is to investigate 

whether an immediate reward can reduce the number of 

required trials or a pure­delayed reward could actually 

reflect the long­term goal best by obtaining rewards in the 

far future. 

 

3.3. Goal­driven  design 

 
Although Reinforcement Learning has been used for 

autonomous tasks, the prominence largely depends on 

whether it can be scaled up to do larger and harder tasks. 

Especially, learning to obtain a good performance in the 

challenging tasks often takes a very long time. In this 

paper, we propose a method based on relaxing the 

constraints to approach the goal more rapidly and learn 

from easier tasks. With relaxing the constraints currently 

imposed on the agent, we give the learner more freedom 

and less restriction to discover useful and effective 

policies. What we do is essentially adjust the termination 

condition to allow better execution in an attempt to 

enhance success for the missions. Generally, it is 

C.-S. Lin et al.: Exploration of strategic reinforcement learning 189

%&"! ' (!) * %&"! ' (!) + ,&-! + ./01
"

%&"!#$' () 2

%&"! ' (!))?) )
!

@2!%!)%&"! ' (!)) $/) (2!) *1($&")#*.0!) ;0"1($&")&;) *) /(*(!<

*1($&")-*$%)&"! ' (!))*()($'!)/(!-)!?),)$/)(2!).!*%"$"3)%*(!?).

$/)(2!)+$/1&0"();*1(&%?)*"+)-!)$/)(2!)%!@*%+)#*.0!)&;)(*B$"3

*1($&")(!) 3$#!") /(*(!) "!4)%&"!#$' ()) +!"&(!/) (2!) *1($&"

!

) 4! 56-!#$ + -!#% + -!#& +6778)) Q7R)
!

-!)

!

) 4! 56-!#$ + .-!#% + .
%-!#& +6778) QNR

?).?)

(

2%&"! ' (!))?)

 .

 .



applicable to know which learning condition is easier to 

fulfil than others in order to reach the goal given that a 

priori knowledge of the problem is available. In the 

sorting problem, we consider the constraint on the number 

of actions (i.e. swaps between two numbers) taken. We 

initially put severe constrains on the problem and 

gradually relax the constraints over the course of learning 

until the goal is achieved or time runs out. Doing this has 

the great merit of making the problem simpler by 

increasing the allowed number of swaps. 

 

3.4. Good  trajectories 

 
The agent learns to improve its skill from observable 

histories called trajectories where each trajectory is a 

state­action sequence of length h denoted as ⟨(𝑠
1
,𝑎

1
), 

(𝑠
2
,𝑎

2
)…(𝑠h,𝑎

ℎ
)⟩. A good trajectory, in this study, is a 

sequence in which the agent is able to reach the goal state 

successfully within a predefined number of steps. By 

contrast, if the agent does not finish the task promptly, we 

consider it a bad trajectory. Although good trajectories 

may not be the optimal solution and there is no guarantee 

that learning from good trajectories will make the agent 

have performance comparable to or better than that of an 

expert, at least it is clear that the agent should try to imitate 

those aspects of the teacher agents. On the contrary, bad 

trajectories are even more ambiguous because it is not 

obvious and sometimes difficult to differentiate whether 

the entire trajectory was wrong or some parts of the 

trajectory were correct. 

Figure 1 shows the flowchart of our training process. 

The input of the algorithm is a training set (denoted as 

Training_Set) which is randomly selected from 𝑛! lists 

where each training sample contains the state and 

constraint. At each iteration, the agent will interact with 

the training sample to perform the sorting task. If the 

training sample is unable to be sorted, we will relax the 

constraint of the sample as described in the previous 

section and save the sample into the replay set (denoted 

as Replay_Set) without updating the Q­table; otherwise, 

the sample will be removed from the Training_Set and the 

Q­table will get updated. At the end of each iteration, 

elements in the Replay_Set will be the new target training 

samples. The training process keeps iterating until all 

training samples have been trained successfully.  

 
 
4. EXPERIMENT  AND  RESULTS 

 
In order to determine the efficacy of our proposed 

approach, a case study in the sorting problem is presented. 

We conducted a series of experiments to observe the 

performance under the learning configurations as well as 

to compare the results with other algorithmic solutions. 

4.1. Experimental  setup 

 
We construct two experimental tasks that aim at 

evaluating our learning strategies to sort 𝑛 numbers. The 

first task is to apply two reward schemes, which is 

specified in Subsection 3.2 on the sorting problem with 

loose constraints. A Q­learning agent is asked to reach the 

goal state within 𝑛2 actions. Given a training sample (i.e. 

a list of numbers), we are interested in the number of 

episodes that the agent can approach a 90% successful rate 

for the latest 100 episodes. This task is designed to assess 

the effect on the different reward schemes. For the second 

task, the agent is expected to interact with the environment 

based on the training flowchart in Fig. 1. We start this task 

with a strict constraint that the agent is required to finish 

sorting within 𝑛 actions. Given a training example, we are 

interested whether the agent can have a 90% successful 

rate for the latest 100 episodes within 45 000 episodes. If 

the agent is able to fulfil the requirement, we will update 

the Q­table and remove this training example from the 

training set; otherwise, the Q­table will stay unchanged 

and the constraint will be relaxed to 𝑛+1 actions at the 

next iteration. The goal of this task is to investigate the 

feasibility about forcing the agent to learn from good 

trajectories and easier missions. In the next section, we 

explain our performance according to the designated tasks 

and compare our results to Quicksort. 

 

4.2. Experimental  results 

 
To evaluate our approach, we employ the proposed Q­

learning agent to sort 𝑛! lists where each list is a per mutation 

of 𝑛 numbers. As a case study, we demonstrate our results 

for 𝑛 equal to 6, 7, and 8. In the training step for both tasks 

described in Subsection 4.1, we randomly select 40 lists 

as our training set for each value of 𝑛.  

For the first task, we illustrate the number of training 

steps needed to take in order to sort each training example 

within 𝑛2 actions for different values of 𝑛 across two 

different reward schemes in Figs 2–4. We note that the 

performance of immediate reward is significantly over 

pure­delayed reward. The comparison of the average 

training steps is outlined in Table 1. As 𝑛 increases, their 

differences tend to increase progressively as well. For 

𝑛 = 6, there are 6! = 720 states while it explodes to 40 320 

states for 𝑛 = 8. So, even with large state spaces, the agent 

is still able to reach an average of 𝑛2 actions to sort after 

acceptable training steps. In this experiment, we keep 

updating the Q­table no matter the agent fails or succeeds 

in the sorting, i.e., we learn from both good and bad 

experiences. 

For the second task, the detailed training results at each 

iteration based on the algorithm in Fig. 1 are reported in 

Tables 2–4. We note that, in general, immediate reward 
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Fig. 1. Training flowchart where the dashed rectangle represents the goal­driven design.
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Fig. 2. Distribution of the number of training steps for two reward schemes when 𝑛 = 6. 

 

 

Fig. 3. Distribution of the number of training steps for two reward schemes when 𝑛 = 7. 
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requires a smaller number of iterations to finish the training 

procedure except when 𝑛 = 6, where both immediate 

reward and pure­delayed reward require four iterations. 

For 𝑛 = 6 and given the immediate reward scheme, there 

is only one list that requires 10 (i.e., 𝑛 + number of 

iteration) actions to finish the training procedure. For 

𝑛 = 7 and 𝑛 = 8 with the immediate reward scheme, all 

40 lists can be trained to sort within 11 (i.e., 7 + 4) actions 

and 13 (i.e., 8 + 5) actions, respectively. 

To examine whether or not our approach offers support 

for the empirical data when compared to the existing 

solution, we assess our results against Quicksort. After the 

training process, we conduct the experiments to sort 𝑛! lists 

for 50 times while 𝑛 equals 6, 7, and 8. Table 5 displays 

the comparative analysis of maximum and average for 
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Fig. 4. Distribution of the number of training steps for two reward schemes when 𝑛 = 8. 
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Quicksort, pure­delayed reward, and immediate reward 

given different values of 𝑛. From the aspect of average 

performance, immediate reward achieves promising results 

and it only needs less than half of the values obtained by 

Quicksort for all cases of 𝑛. On average, it only takes 5.03 

actions to sort six numbers, 6.67 actions to sort seven 

numbers, and 9.18 actions to sort eight numbers. Although 

pure­delayed reward did not yield a good average value 

while attempting to sort six numbers, it still holds better 

performance for sorting seven and eight numbers 

compared to Quicksort. The detailed results of 50 

experiments for 𝑛 equal to 6, 7, and 8 are shown in Fig. 5, 

Fig. 6, and Fig. 7, respectively. In conclusion, our training 

algorithm for both reward schemes is capable of improving 

the behaviour by learning from good experiences and goal­

driven strategy despite its training overhead.  

5. CONCLUSION  AND  FUTURE  WORK 

 
In this paper, we described in detail our learning method 

that enables the reinforcement learning agent to improve 

its behaviours. We introduced human­like strategies for 

the agent to adopt while gaining experience with the 

environment. Two different reward schemes (pure­

delayed reward and immediate reward) were chosen so as 

to guide the learning process and access their impacts on 

the training. As a result of our experiment, immediate 

reward took much less steps to complete the training 

process than pure­delayed reward. To shorten the learning 

time and avoid unnecessary trial and error, we adopted 

rapid and easy task learning by relaxing the constraints of 

maximum allowable actions. To exploit and imitate past 

good experiences, we propose to learn from good 

trajectories in which the agent is able to reach the goal 

state efficiently. Our case study was conducted on the 

sorting problem. On average, the number of comparisons 

for immediate reward is about half the number of 

comparisons necessary for Quicksort. The empirical 

results indicate that there is a substantial reduction in the 

number of steps to solve the problem. 

The future work is to investigate the selection of 

training samples and evaluate its influence on the sorting 

task. In our current approach, we randomly selected 40 

lists as our training set without applying instance selection 

techniques. We plan to study whether the property of 

training samples influences the outcome of the training 

and accuracy of the performance by considering the 

difference of choosing between difficult states (i.e., most 

digits are in the wrong positions) and easy states (i.e., 

most digits are in the correct positions) as the training 

targets. Moreover, we will also investigate whether the 

number of training samples has significant impact on 

training processes, and deal with the automatic 

determination of the number of training samples. Another 
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Table 5. The performance comparison between two reward 

schemes and Quicksort for 50 experiments of different values 

of 𝑛. From the aspect of average performance, the immediate 

reward approach achieves the best results which are highlighted 

in bold 

Fig. 5. Detailed results of maximum (a) and average (b) values to sort 6! lists for 50 times regarding pure­delayed reward, immediate 

reward, and Quicksort. 
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avenue of future work is to improve the efficiency of the 

training process. As we can see from Table 1, it takes more 

than 1000 training steps to complete the training task for 𝑛 

equal to 8 with loose constraints (𝑛2 actions). It would be 

necessary to accelerate learning in order to handle larger 𝑛. 

Transfer learning has been used to speed up learning 

through the adaptation of previously learned behaviours by 

the inter­task mapping. In the sorting problem, instead of 

randomly initializing weights for larger 𝑛, we will explore 

its state similarity with previously learned tasks and 

initialize its action­value by leveraging the knowledge 

from prior learned and similar states. 
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