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Abstract. The EST (Elements by a System of Transfer equations) method offers exact solutions for various vibration problems of

trusses, beams and frames. The method can be regarded as an improved or modified transfer matrix method where the roundoff

errors generated by multiplying transfer arrays are avoided. It is assumed that in a steady state a beam will vibrate with the circular

frequency of an excitation force. The universal equation of elastic displacement (4th order differential equation) is described as a

system of first order differential equations in matrix form. For the differential equations, the compatibility conditions of a beam

element displacements at joint serve as essential boundary conditions. As the natural boundary conditions at joints, the equilibrium

equations of elastic forces of beam elements are considered. At the supports, restrictions to displacements (support conditions)

have been applied. For steady-state forced vibration, the phenomena of dynamic vibration absorption near the saddle points are

observed, and the response curves for displacement amplitude and elastic energy are calculated.

Key words: steady-state forced vibrations, frequency response curves, dynamic vibration absorption, forcing functions, transfer

equations, essential dynamic boundary conditions at joints, natural boundary conditions at joints, dynamic support conditions.

1. INTRODUCTION

One of the problems in structural engineering has been predicting the response of a structure or mechanical

system to external steady-state forced vibration [2]. Two phenomena, resonance and dynamic vibration

absorption, have been of great interest [3,4].

In computational structural mechanics the state-space representation of mechanical systems can be seen

as an application of the transfer matrix method [5–9]:

ZL = U ·ZA +Zp, (1)

where

ZA, ZL designate the components (displacements, internal forces) of the state vectors at the beginning

(x = 0) and end (x = �) of the element;

Zp is the element loading vector;

U denotes the transfer matrix.

∗ A sequel to “Modified transfer matrix method for steady-state forced vibration: a system of bar elements” [1].
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The forces are classified into internal (elastic and dissipative) and external (conservative and non-

conservative) [10, p. 50; 11, p. 529].

An external force can be added as an element load (described by a forcing function) or as a nodal load

on joints. The general solution to an ordinary differential equation can be obtained by adding a particular
solution gained by the forcing function [12] to the solution of a homogeneous equation.

The forcing function for the linear time periodic (LTP) system [13] is dealt with in [14, p. 121; 15; 16;

17, p. 248; 9, pp. 26, 93, 94]. For input, the harmonic transfer function [18; 19, pp. 2, 3] with fundamental

or pumping frequency [20, p. 48] has been used.

If there is a constraint force (load on joint) on the node, we have a problem with non-homogeneous

boundary conditions that can be converted to an equivalent problem with homogeneous boundary conditions

[21, p. 57; 22, p. 43].

Let us regard a set of transfer equations (similar to Eq. (1)) interconnected through the boundary condi-

tions to a complete system:

spA(ω) ·ΦΦΦ =−Z̊, (2)

where the vector ΦΦΦ components Φk (k = 1, 2, ..., N) are unknown state vectors of element ends and support

reactions, where state vectors ZA and ZL components are Φi (i = 1, 2, ..., n) and dynamic support reactions

are Cj ≡ Φn+ j (j = 1, 2, ..., m), n+m = N. The term spA(ω) is an augmented transfer matrix. The right-

hand side Z̊ (global loading vector) of the equation system contains element loading vectors Zp and nodal
loads. Boundary conditions play an important role for transfer equations [23, p. 1115]. The beam elements

in Eq. (2) are interconnected through boundary conditions1 [8, pp. 34–48]:

• compatibility equations of the displacements at nodes (geometric/essential boundary condition);

• joint equilibrium equations at nodes (natural boundary condition);

• side conditions (for bending moment, axial and shear force hinges);

• support conditions (restrictions on support displacements).

Here, by the improved or modified transfer matrix method, unlike the transfer matrix method (TMM)

[2; 25, p. 236], transfer matrices are not multiplied to find the initial parameters (state vectors) [8, p. 49].

Hence the roundoff errors generated by multiplying transfer arrays are avoided. We will scale up (multiply)

the displacements by the scaling multiplier. After solving the system of linear equations, we scale down
(unscale) the initial parameter vectors of the elements dividing each of the displacements found by the

scaling multiplier.

In a modal analysis, for the system of equations (2) the load vector is set to zero [26, eq. (31)]:

spA(ωi) ·ΦΦΦi = 0. (3)

For the nontrivial solution ΦΦΦi of the homogeneous system (3), we will choose a free variable in accordance

with the natural frequency ωi:

det(spA(ωi)) = 0. (4)

Here ωi denotes different natural (or characteristic, or normal) frequencies that are found numerically

by the bisection method. These values are conventionally arranged in sequence from smallest to largest

(ω1 < ω2 < .. .ωn).
For all the frequencies picked out from Eq. (4), the given boundary conditions and transfer equations

are met.

1 Euler–Bernoulli beam elements interconnected through boundary conditions are also considered in system-level modeling of

microelectromechanical systems [24, p. 157].
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The mode shapes are calculated according to Eq. (3), where the column of free variables is shifted to the

right-hand side, and the system of equations obtained is solved with the least-squares method. After finding

the initial parameters, we compile the mode shapes.

Free vibrations of beams with boundary and initial conditions are dealt with in [27].

To sustain vibration, energy must be supplied or tranferred out. Two phenomena, resonance and dynamic

vibration absorption, are of importance in steady-state forced vibrations [28]. On the frequency axis of

steady-state forced vibration response curves, singular points – star and saddle points – lie [28; 29, p. 143].

The total response is the sum of the homogeneous and forced responses [20, p. 62]. For resonant

frequency identification, the fundamental input frequency ωp (pumping frequency for particular solution) is

used [13, p. 4; 19, pp. 2, 3; 30].

In the saddle points of a LTP system, dynamic vibration absorption occurs.

2. STEADY-STATE FORCED VIBRATION OF BEAMS

Consider the free body diagram of a differential element of the beam in Fig. 1, where ẅ = ∂ 2w/∂ t2.

We will apply d’Alembert’s principle to extract the partial differential equation for transverse vibration

of an elastic beam:

ΣM2 = 0; dM−Qzdx+(pz (x, t)−mẅ)dx2/2︸ ︷︷ ︸
higher order values

= 0, (5)

ΣQz = 0; dQ+(pz (x, t)−mẅ)dx = 0, (6)

where m = ρA with ρ as the mass density and A as the cross sectional area of the beam element.

Now the Euler–Bernoulli hypotheses are used. The constitutive law for the beam relating the displace-

ments w(x) (curvature d2w/dx2) and the bending moment My is

d2w
dx2

=−dϕy

dx
=− 1

EIy
My, (7)

where EIy is the bending stiffness of the beam. Combining Eqs (5), (6) and (7), we get (cf. [31, p. 1029])

∂ 2

∂x2
EIy

∂ 2w
∂x2

+m
∂ 2w
∂ t2

= pz (x, t). (8)

Let us suppose that for the solution w(x, t), space and time given as separated functions (cf. [32, pp. 9–10;

33, eq. (8); 34, p. 21; 27]):

w(x, t) = f (x)eiθ t. (9)
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Fig. 1. Inertial force acting on a differential beam element.Fig. 1. Inertial force acting on a differential beam element.
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Here f (x) is a function of the independent variable x, and in the general case, θ is a complex frequency:

θ = ω + iζω , (10)

where ω = Re(θ) and ζω = Im(θ) (see double imaginary characteristic roots on a complex plane [35, p.

29; 36; 37]). At steady-state vibration, Im(θ) describes: 1) in time-domain, the absence of damping, and 2)

in requency-domain, a phase-angle jump (PAJ) at natural frequencies (cf. [38]). The couplings between the

frequencies of input and output signals can be taken into account [20,39,40; 41, pp. 13–14; 42].

Here the stability of a system is held together with its equilibrium state: a) at negative values of ζω < 0,

the slightly disturbed equilibrium state remains stable; b) at positive values of ζω > 0, the slightly disturbed

equilibrium state becomes unstable; c) at zero values of ζω = 0 (see sign principle [43, p. 444; 44]), the

equilibrium state remains neutral/indifferent, the system is marginally stable.

If the loading is given as pz (x, t) = qz (x)eiϖt [32, p. 21; 45, eq. (15); 33, eq. (6)], then substituting Eq.

(9) into Eq. (8) gives [
EIy

d4 f (x)
dx4

−ω2ρA f (x)
]

eiθ t = qz (x)eiϖt . (11)

Here ϖ denotes the driving circular frequency.

After incorporating, at position xa, the concentrated force Fz (x)δ (x− xa) eiϖt and the concentrated

moment My (x)δ (1) (x− xa)eiϖt into Eq. (11), we obtain

[
EIy f IV (x)−ρAω2 f (x)

]
=
[
qz (x)+Fz (x)δ (x− xa)+My (x)δ (1) (x− xa)

]
eiϖt−iθ t , (12)

where

Fz (x) δ (x− xa) is a distributed force equivalent to a concentrated force (cf. [46, eq. (6)]);

My (x)δ (1) (x− xa) is a distributed force equivalent to a concentrated moment (cf. [46, eq. (7)]);

δ (x− xa) is the Dirac delta function;

δ (1) (x− xa) is the first distributional derivative of the Dirac delta function [46, eq. (5)].

We start counting the coordinate at x = x◦ = 0 and time at t = t◦ = 0 when the steady state frequency is

same as the driving frequency (cf. differential equation being described as a system of first order differential

equations [34, p. 29]). The natural exponential function is equal to 1 if exp(i(ϖ −θ) t = 0); it means that

there are two possibilities: t = t◦ = 0 (cf. initial conditions in [27, p. 11]), or at 0 < t ≤ nT , where T is a

period of vibration, the condition

Ĝ = i [ϖ −ω]+ζω = 0 (13)

must be satisfied (cf. boundary conditions [27, p. 11]).

Let us start our investigation with a neutral/indifferent equilibrium (ζω = 0, see the sign principle). The

zero values of ζω = Im(ω) = 0 divide the parameter space into regions by the stability.

In frequency-domain we take the circular frequency ω = ϖ (ϖ �= ωn, where ωn denotes the natural

frequency). The crossing boundaries ω− = ωn−ε and ω+ = ω−+Δωn (Δωn marks a phase shift or phase-
angle jump) divide the space into regions [36, fig. 2; 47; 48].

If the area A and moment of inertia Iy of the beam cross-section are constant, then using the assumption

of Eq. (13), we get from the differential equation (12) a non-homogeneous 4th order differential equation to

find the amplitudes of steady-state output response [20, p. 62]:

f IV (x)− ω2ρA
EIy

f (x) =
q(x)
EIy

+
Fz (x)δ (x− xa)

E Iy
+

My (x)δ (1) (x− xa)

E Iy
. (14)

Equation (14) matches [33, eqs (9), (12)].

At steady-state forced vibration, for systems of periodically intermittent time [47] with (n+1)T ≥ t ≥
nT , the frequencies ωn lying on the abscissa axis of the amplitude-frequency-plane are given as singular

points with n = 1, 2, 3, ..., N and N → ∞ [28,49]. The isolated singular points are star points, and the double

singular points are saddle points.
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The homogeneous differential equation below serves to find eigenvalues and eigenvectors:

f IV (x)− ω2ρA
EIy

f (x) = 0 (15)

or

f IV (x)−κ4 f (x) = 0. (16)

Here we use an auxiliary variable κ

κ4 =
ω2ρA

EIy
=

ω2

c2
, (17)

where κ represents the repeated roots of a characteristic (or frequency, or secular) equation of the linear

differential equation for a beam:

κ1,2 =
4

√
ω2ρA

EIy
, κ3,4 = i 4

√
ω2ρA

EIy
. (18)

We have double real and double imaginary characteristic roots (κ1,2 and κ3,4, respectively) for dynamical

systems [36,37].

Dimensionless eigenvalues

λn = κ �= � 4

√
ω2

n ρA
EIy

, (19)

where � is the beam length.

To solve non-homogeneous linear ordinary differential equations of 4th order, e.g., Eq. (14), variation

of parameters2, also known as variation of constants, is a general method applied. The initial parameters

method [50, eq. (142), p. 43; 51, p. 5; 52, p. 248 (LMC3 126)] is also used.

The basic equation (2) of the EST method used in this paper may be considered as an improved transfer

matrix method to find the state vectors, e.g., ZA and ZL in Eq. (1). Due to the normed fundamental set
of solutions, the output parameters do not change the zero value of initial parameters at x = 0. Unlike the

traditional transfer matrix method [2; 25, p. 236], here the transfer matrices are not multiplied to find the

initial parameters. The novelty of this approach lies in the initial parameter vectors found by compiling

sparse linear systems of equations incorporating transfer equations and boundary conditions (Eq. (2)) that

are solved directly. Thus, the roundoff errors generated by multiplying transfer arrays are avoided.

First, we determine the state vectors ZA and ZL in Eq. (2) with the basic equations of the EST method
[8, p. 49] that fit the solution of the homogeneous linear ordinary differential equation (15) (see [8, p.

33]). Further we calculate the state vector ZL (x) in Eq. (2) which is consistent with the non-homogeneous

equation (14). The EST method makes use of the variation of parameters to solve problems of steady-state

forced vibrations as well as statics of structural systems with interconnected elements.

In order to solve Eq. (37), we need to find the loading vector Zp. The frequency ω at singular points has

a phase-angle jump Δωn associated with in-phase/out-of-phase behaviour [53, slide 36]. The dimensionless

frequency phase-angle jump Δλk at singular points is also used. For sinusoidal response, a phase shift to the

opposite phase is equal to π (out-of-phase) and a shift to the same phase is equal to 2π (in-phase).

A singular point is often associated with a sudden change in the system. In case of undamped harmonic

loading, at response frequency, the amplitudes f (x) at singular points may reach infinity (quality factor

2 https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Elementary_Differential_

Equations_with_Boundary_Values_Problems_(Trench)/09%3A_Linear_Higher_Order_Differential_Equations/

9.04%3A_Variation_of_Parameters_for_Higher_Order_Equations
3 LMC – left mouse click.

https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Elementary_Differential_Equations_with_Boundary_

Values_Problems_(Trench)/09%3A_Linear_Higher_Order_Differential_Equations/9.04%3A_Variation_of_Parameters_for_High

er_Order_Equations

https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Elementary_Differential_Equations_with_Boundary_Values_Problems_(Trench)/09%3A_Linear_Higher_Order_Differential_Equations/9.04%3A_Variation_of_Parameters_for_Higher_Order_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Elementary_Differential_Equations_with_Boundary_Values_Problems_(Trench)/09%3A_Linear_Higher_Order_Differential_Equations/9.04%3A_Variation_of_Parameters_for_Higher_Order_Equations
https://math.libretexts.org/Bookshelves/Differential_Equations/Book%3A_Elementary_Differential_Equations_with_Boundary_Values_Problems_(Trench)/09%3A_Linear_Higher_Order_Differential_Equations/9.04%3A_Variation_of_Parameters_for_Higher_Order_Equations
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Q = ∞), and a phase-angle jump occurs [54, p. 534; 55]. At star points, amplitude changes are significantly

larger than at saddle points, where amplitude changes should be determined with low threshold or can be

labelled as ‘positive’ versus ‘negative’ (see Fig. 10a) [55]. A saddle point phase portrait is shown in [56,

p. 181 (LMC 199), fig. 4.7 (c)]. For steady-state forced vibration loading, dimensionless frequency phase-

angle jumps Δλk appear:

– at star points (k = 1, 3, 5, ...);
– at saddle points (k = 2, 4, 6, ...).

At singular points, the amplitude f (x) sign changes into reverse (Fig. 10a) associated with the in-
phase/out-of-phase behaviour [53, slide 36].

The general solution f (x) of the non-homogeneous differential equation (14) can be expressed as a sum

of the general solution fh (x) of the complementary equation (15) and the particular solution fe (x) of the

non-homogeneous differential equation (14).

The fundamental set of solutions to the differential equation (16) has the form

f ∗1 (κx) = chκx, f ∗2 (κx) = shκx, f ∗3 (κx) = cosκx, f ∗4 (κx) = sinκx. (20)

We norm the fundamental set of solutions (20) so that the Wronskian W (x) (normalized fundamental mat-

rix) is the determinant of the identity matrix I4×4 at x = 0. The normed fundamental set of solutions for the

homogeneous differential equation is given below [9, p. 67; 33, eq. (15)]:

f1 (κx) =
1

2
(chκx+ cosκx) = K1 (κx) , (21)

f2 (κx) =
1

2κ
(shκx+ sinκx) =

1

κ
K2 (κx) , (22)

f3 (κx) =
1

2κ2
(chκx− cosκx) =

1

κ2
K3 (κx) , (23)

f4 (κx) =
1

2κ3
(shκx− sinκx) =

1

κ3
K4 (κx) . (24)

The functions Ki (κx) are also called Krylov–Duncan functions [57, p. 192; 50, eq. (136), p. 42; 16, p. 543;

17, p. 247].

Krylov–Duncan functions and their derivatives satisfy permutations [57, p. 192; 17, p. 247] (see Tables 1

and 2).

Table 1. A cyclic order of Krylov-Duncan functions derivatives

Derivatives

First Second Third Fourth

K1 (κx) κK4 (κx) κ2K3 (κx) κ3K2 (κx) κ4K1 (κx)
K2 (κx) κK1 (κx) κ2K4 (κx) κ3K3 (κx) κ4K2 (κx)
K3 (κx) κK2 (κx) κ2K1 (κx) κ3K4 (κx) κ4K3 (κx)
K4 (κx) κK3 (κx) κ2K2 (κx) κ3K1 (κx) κ4K4 (κx)

Table 2. Initial values: derivatives of normed fundamental solutions at x◦ = 0

Derivatives

First Second Third Fourth

g1 (κx) 0 0 0 1

g2 (κx) 1 0 0 0

g3 (κx) 0 1 0 0

g4 (κx) 0 0 1 0

Krylov Duncan functions and their derivatives satisfy permutations [57, p. 192; 17, p. 247] (see Tables 1

nd 2).

Table 1. A cyclic order of Krylov-Duncan functions derivatives

Derivatives

First Second Third Fourth

K1 (κx) κK4 (κx) κ2K3 (κx) κ3K2 (κx) κ4K1 (κx)
K2 (κx) κK1 (κx) κ2K4 (κx) κ3K3 (κx) κ4K2 (κx)
K3 (κx) κK2 (κx) κ2K1 (κx) κ3K4 (κx) κ4K3 (κx)
K4 (κx) κK3 (κx) κ2K2 (κx) κ3K1 (κx) κ4K4 (κx)

Table 2. Initial values: derivatives of normed fundamental solutions at x◦ = 0

Derivatives

First Second Third Fourth

g1 (κx) 0 0 0 1

g2 (κx) 1 0 0 0

g3 (κx) 0 1 0 0

g4 (κx) 0 0 1 0

   Functions

K1 (κx)
K2 (κx)
K3 (κx)
K4 (κx)

                                  Table 1. The cyclic order of Krylov–Duncan functions derivatives

Table 2. Initial values: derivatives of normed fundamental solutions at x = 0

of normed fundamental solutions at x = 0

Solution set f1 f2 f3 f4

Function 1 0 0 0

1st derivative 0 1 0 0

2nd derivative 0 0 1 0

3rd derivative 0 0 0 1

Solution set

0 0

1 0

0 1

0 0
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The particular solution of Eq. (14), with zero initial value (zero state response), is obtained using the

convolution integral [58, p. 156; 59, p. 279; 9, p. 92]

fe (x) =
∫ x

x◦
Gn (x,ξ )gn (ξ )dξ (25)

or, to be more precise,

fe (x) =
∫ x

x◦
G4 (x,ξ )g4 (ξ )dξ +

∫ x

x◦
G3 (x,ξ )g3 (ξ )dξ +

∫ x

x◦
G2 (x,ξ )g2 (t)dξ . (26)

Here Gn (x,ξ ) is the normed fundamental set of solutions to the associated homogeneous differential equa-

tion, given by Eqs (21) – (24):

G4 (x,ξ ) = f4 (x−ξ ) =
1

2κ3
(shκ (x−ξ )− sinκ (x−ξ )) =

1

κ3
K4 (κ (x−ξ )), (27)

G3 (x,ξ ) = f3 (x−ξ ) =
1

2κ2
(chκ (x−ξ )− cosκ (x−ξ )) =

1

κ2
K3 (κ (x−ξ )), (28)

G2 (x,ξ ) = f2 (x−ξ ) =
1

2κ
(shκ (x−ξ )+ sinκ (x−ξ )) =

1

κ
K2 (κ (x−ξ )). (29)

The load function gn (ξ ) from Eq. (25) is described with

g4 (ξ ) =
qz (ξ )
E Iy

, g3 (ξ ) =
Fz (ξ )
E Iy

, f2 (ξ ) =
My (ξ )

EIy
(30)

(cf. Eq. (14)).

We get the following particular solutions, where the relationship λ = κ� is taken into account and xa = a.

For qz

f4e (x) =
qz

E Iy

1

2κ4

[
chκ 〈x−a〉+ + cosκ 〈x−a〉+ −2

]

=
qz

E Iy

1

κ4

[
K1

(
κ 〈x−a〉+

)−1
]
=

qz

E Iy

�4

λ 4

[
K1

(
κ 〈x−a〉+

)−1
]
. (31)

This particular solution compares well with solutions in [57, p. 197] and [2, p. 143].

For Fz

f3e (x) =
Fz

E Iy

1

2κ3

[
shκ 〈x−a〉+ − sinκ 〈x−a〉+

]

=
Fz

E Iy

1

κ3

[
K4

(
κ 〈x−a〉+

)]
=

Fz

E Iy

�3

λ 3

[
K4

(
κ 〈x−a〉+

)]
. (32)

The present particular solution compares well with the solution in [14, p. 120].

For My

f2e (x) =
My

E Iy

1

2κ2

[
chκ 〈x−a〉+ − cosκ 〈x−a〉+

]

=
My

E Iy

1

κ2

[
K3

(
κ 〈x−a〉+

)]
=

My

E Iy

�2

λ 2

[
K3

(
κ 〈x−a〉+

)]
. (33)

The particular solutions f4e (x), f3e (x), f2e (x) compare well with the equations in [33, eq. (23)] (ri = 0).

According to I. M. Babakov [15], cited in [17, p. 248], the particular solutions including a harmonic

force or moment are also called Krylov’s partial integrals.
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To create the loading vector Zp = Zq + ZF + ZM of the transfer equations, we use the particular solutions

(31), (32) and (33).

Loading vector components of a distributed force qz:

Zq =

⎡
⎢⎢⎢⎢⎢⎢⎣

◦
we
◦
ϕe
◦
Qe
◦

Me

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

f4e

− f ′4e

−E Iy f ′′′4e

−E Iy f ′′4e

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

qz

E Iy

1

κ4

[
K1

(
κ 〈x−a〉+

)−1
]

− qz

E Iy

1

κ3

[
K4

(
κ 〈x−a〉+

)]

−qz

κ
[

K2

(
κ 〈x−a〉+

)]

− qz

κ2

[
K3

(
κ 〈x−a〉+

)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

Loading vector components of a concentrated force Fz (cf. [14, eqs (6.65)–(6.68), p. 120]) [33, eq. (21)]:

ZF =

⎡
⎢⎢⎢⎢⎢⎢⎣

◦
we
◦
ϕe
◦
Qe
◦

Me

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

f3e

− f ′3e

−E Iy f ′′′3e

−E Iy f ′′3e

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fz

E Iy

1

κ3

[
K4

(
κ 〈x−a〉+

)]

− Fz

E Iy

1

κ2

[
K3

(
κ 〈x−a〉+

)]

−Fz
[

K1

(
κ 〈x−a〉+

)]

−Fz

κ
[

K2

(
κ 〈x−a〉+

)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

Loading vector components of a concentrated moment My [33, eq. (21)]:

ZM =

⎡
⎢⎢⎢⎢⎢⎢⎣

◦
we
◦
ϕe
◦
Qe
◦

Me

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

f2e

− f ′2e

−E Iy f ′′′2e

−E Iy f ′′2e

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

My

E Iy

1

κ2

[
K3

(
κ 〈x−a〉+

)]

−My

E Iy

1

κ
[

K2

(
κ 〈x−a〉+

)]

−Myκ
[

K4

(
κ 〈x−a〉+

)]

−My
[

K1

(
κ 〈x−a〉+

)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

To describe the beam element shown in Fig. 2, we apply the right-handed coordinate system and sign

convention 2.

Let us present the transfer equations for vibration of a Euler–Bernoulli beam (sign convention 2 is used):

ZL (x) = U ·ZA +Zp. (37)
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Fig. 2. Beam element with positive direction of displacements, rotations, forces and bending moments.
Fig. 2. Beam element with positive direction of displacements, rotations, forces and bending moments.
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Fig. 3. Indices of state vector components for a beam element.

Components of the state vector are displacements, rotations, shear forces and bending moments at the ends

of the element shown in Fig. 3.

ZA =

⎡⎢⎢⎣
wA
ϕA
QA
MA

⎤⎥⎥⎦=

⎡⎢⎢⎣
Z (1)
Z (2)
Z (3)
Z (4)

⎤⎥⎥⎦, ZL =

⎡⎢⎢⎣
wL
ϕL
QL
ML

⎤⎥⎥⎦=

⎡⎢⎢⎣
Z (5)
Z (6)
Z (7)
Z (8)

⎤⎥⎥⎦. (38)

The components of the state vector Z (i) (i = 1, 2, 3, ..., 8) (cf. Φ(i) in Eq. (2)) in index notation are brought

in Fig. 3.

Here, to find the initial parameter vectors ZA, we improve or modify the transfer matrix method. In

the traditional transfer matrix method, to find the initial parameters (state vectors) the transfer matrices

are multiplied. To avoid the roundoff errors generated by multiplying transfer arrays, we will compile

sparse linear systems of equations containing transfer equations and boundary conditions. With these sparse

equations, designated by us as the basic equations of the EST method, we find the initial parameter vector

ZA. The sparse equations (2) can be expressed as the basic equations of the EST method for a beam:

[U− I4×4]

[
ZA
ZL

]
=−Zp, (39)

hence

ÛI4×8 · Ẑ =−Zp. (40)

Here Zp is the loading vector,

Ẑ =

[
ZA
ZL

]
, (41)

and ÛI4×8 is the augmented transfer matrix (U4×4 | −I4×4):

ÛI4×8 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 (κ�) − 1
κ K2 (κ�)

i◦
EI

1

κ3
K4 (κ�)

i◦
EI

1

κ2
K3 (κ�)

−κK4 (κ�) K1 (κ�) − i◦
EI

1

κ2
K3 (κ�) − i◦

EI
1

κ
K2 (κ�)

− 1

i◦
EIκ3K2 (κ�)

1

i◦
EIκ2K3 (κ�) −K1 (κ�) −κK4 (κ�)

− 1

i◦
EIκ2K3 (κ�)

1

i◦
EIκK4 (κ�) − 1

κ K2 (κ�) −K1 (κ�)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎤⎥⎥⎦, (42)

where � is the length of the beam element, and i◦ is the scaling multiplier for displacements and rotations

(e.g., i0 = 1.0, i0 = EIbasic/�basic).

Fig. 3. Indices of state vector components for a beam element.
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In system (2), the first four equations represent the basic equation (39) of the EST method, the rest being

boundary conditions.

The boundary conditions of a cantilever beam:

wA ≡ Φ(1) = 0,
ϕA ≡ Φ(2) = 0,
QL ≡ Φ(7) = 0,
ML ≡ Φ(8) = 0.

(43)

Equated to zero, the determinant of the coefficient matrix of equations (39) (cf. Eq. (4)) – the boundary

conditions of which are expressed by Eq. (43) (see [9, p. 72]) – allows us to form the frequency (or charac-

teristic, or secular) equation for a cantilever beam. After reducing the determinant and substituting κ�= λ ,

we obtain the frequency equation (cf. [14, p. 110; 60, p. 527])

1+ ch(λ )cos(λ ) = 0, (44)

λ1 = 1.8751040; λ2 = 4.6940911; λ3 = 7.8547574; λ4 = 10.9955407; λ5 = 14.1371684; λ6 = 17.2787595.

The boundary conditions of a fixed-fixed beam:

wA ≡ Φ(1) = 0,
ϕA ≡ Φ(2) = 0,
wL ≡ Φ(5) = 0,
ϕL ≡ Φ(6) = 0.

(45)

Equated to zero, the determinant of the coefficient matrix of equation (39) (cf. Eq. (4)) – the boundary

conditions of which are expressed by Eq. (45) (see [9, p. 73]) – makes it possible to write the frequency (or

characteristic, or secular) equation for a fixed-fixed beam. We obtain the frequency equation after reducing

the determinant and substituting κ�= λ (cf. [14, p. 109; 60, p. 527]):

ch(λ )cos(λ )−1 = 0, (46)

λ1 = 4.7300407; λ2 = 7.8532046; λ3 = 10.9956078; λ4 = 14.1371655; λ5 = 17.2787597; λ6 = 20.4203522.

The boundary conditions of a simply supported beam (with a pin connection on one end and a roller

support on the other):

wA ≡ Φ(1) = 0,
MA ≡ Φ(4) = 0,
wL ≡ Φ(5) = 0,
ML ≡ Φ(8) = 0.

(47)

Equated to zero, the determinant of the coefficient matrix of equation (39) (cf. Eq. (4)) – the boundary

conditions of which are expressed by Eq. (47) (see [9, p. 74]) – makes it possible to write the frequency

(or characteristic, or secular) equation for a simply supported beam. We obtain the frequency equation after

reducing the determinant and substituting κ�= λ (cf. [14, p. 108; 60, p. 527]):

shλ sinλ = 0 (if λ �= 0, then sinλ = 0), (48)

λ1 = 3.141593; λn+1 = λn +π (n = 1,2,3, ...).
The boundary conditions of a propped cantilever beam (fixed on one end, the free end resting on a

roller support):

wA ≡ Φ(1) = 0,
MA ≡ Φ(4) = 0,
wL ≡ Φ(5) = 0,
ϕL = Φ(6) = 0.

(49)
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Equated to zero, the determinant of the coefficient matrix of equations (39) (cf. Eq. (4)) – the boundary

conditions of which are expressed by Eq. (49) (see [9, p. 75]) – allows us to form the frequency (or charac-

teristic, or secular) equation for a propped cantilever beam. After reducing the determinant and substituting

κ�= λ , we obtain the frequency equation (cf. [14, p. 110; 60, p. 527])

chλ sinλ − shλ cosλ = 0, (50)

λ1 = 3.9266023; λ2 = 7.0685827; λ3 = 10.2101761; λ4 = 13.3517687; λ5 = 16.4933614; λ6 = 19.6349541.

The natural eigenvalues for beams, with different boundary conditions, found above are equal to the

frequencies gained with the Adomian decomposition method (ADM) [61, table 1, p. 11].

Example 2.1 (steady-state forced vibration of a fixed-fixed beam). Compose the steady-state frequency

response curves of a fixed-fixed beam. Find the amplitudes of displacements, angles of rotation, bending

moments and shear forces of the beam in Fig. 4 under the excitation force Fbeiϖt .

The fixed-fixed beam is of length � = 0.229m; the distance a from the left end of the beam to point

b is 0.1145m; the cross-sectional height is 0.79mm and width 1.27cm; elastic or Young’s modulus E =
205GN/m2; shear modulus G = 76.53228GN/m2; mass density ρ = 7.870×103 kg/m3; Ared = A/1.2 (A

is the cross-sectional area). The forcing amplitude Fb = 0.889644N with frequencies ϖb = 376.99s−1 ∼=
fb = 60Hz and ϖb = 628.32s−1 ∼= fb = 100Hz (cf. [62]).

The relationship between the angular frequency ω and dimensionless frequency λ is given by the for-

mula (cf. [9, p. 77])

ωn =
λ 2

n

�2

√
EI
Aρ

= λ 2
n

√
EI
m�4

. (51)

The system of EST-method equations (40) (cf. Eq. (2)) is

spA ·Z = Z̊, (52)

where Z is the vector of unknowns:

Z =

[
Za
Zc

]
. (53)

The state vector input Za and output Zc components are displacements and forces at the ends of the

beam ac in Fig. 5:

Za =

⎡⎢⎢⎢⎣
w(ac)

A

ϕ(ac)
A

Q(ac)
A

M(ac)
A

⎤⎥⎥⎥⎦≡

⎡⎢⎢⎣
Z (1)
Z (2)
Z (3)
Z (4)

⎤⎥⎥⎦, Zc =

⎡⎢⎢⎢⎣
w(ac)

L

ϕ(ac)
L

Q(ac)
L

M(ac)
L

⎤⎥⎥⎥⎦≡

⎡⎢⎢⎣
Z (5)
Z (6)
Z (7)
Z (8)

⎤⎥⎥⎦. (54)

l

a Fb ϖexp(i   t)

b ca

Fig. 4. Fixed-fixed beam.Fig. 4. Fixed­fixed beam.
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Fig. 5. Displacement and force indices of fixed-fixed beam element.

The components of the state vector Z (i) (i = 1, 2, 3, .., 8) (cf. Φ(i) in Eq. (2)) in index notation are

shown in Fig. 5.

In system (52), the first four equations represent the basic equation (39) of the EST method, the rest are

boundary conditions:

w(ac)
A ≡ Z (1) = 0,

ϕ(ac)
A ≡ Z (2) = 0,

w(ac)
L ≡ Z (5) = 0,

ϕ(ac)
L ≡ Z (6) = 0.

(55)

For nontrivial solutions of the homogeneous system (52), natural frequencies ωi of the beam are found.

Figure 6 illustrates the dependence of the determinant of the coefficient matrix of Eqs (52) on angular

frequency ω of the beam.

The first eight natural frequencies of the fixed-fixed beam are: ω1 = 496.574977s−1, ω2 =
1368.828047s−1, ω3 = 2683.450276s−1, ω4 = 4435.879619s−1, ω5 = 6626.438860s−1, ω6 =
9255.108706s−1, ω7 = 12321.888787s−1, ω8 = 15826.801500s−1; f1 = 79.032Hz, f2 = 217.86Hz, f3 =
427.08Hz, f4 = 705.99Hz, f5 = 1054.6Hz, f6 = 1473.0Hz, f7 = 1961.1Hz, f8 = 2518.9Hz. The relation-

ship between dimensionless and natural eigenvalues (λi and ωi, respectively) of the fixed-fixed beam is given

by the formula (cf. [9, p. 78])

λi = κi�=
√

ωi

(
ρA
EI

)1/4

�. (56)

With this formula, we convert the natural eigenvalues ωi to dimensionless eigenvalues λi: λ1 = 4.730041,

λ2 = 7.853205, λ3 = 10.995608, λ4 = 14.137165, λ5 = 17.278760, λ6 = 20.420352, λ7 = 23.561944,

λ8 = 26.703522. The calculated frequencies are in good agreement with the results obtained in [63, p. 7.15].

To apply a nodal load, we divide the beam into two elements (Fig. 7). The natural frequencies of the

fixed-fixed beam with two elements are equal to the frequencies found with one element (Fig. 5).

ω [s    ]

D
et

0 0 3000 0 6000 0 9000 0 0 0 0

0

ω2 = 1368.8

ω1 = 496.57

ω3 = 2683.5

ω4 = 4435.9

ω5 = 6626.4

ω6 = 9255.1

ω7 = 12321.9

Dependence of the determinant on angular frequency

Fig. 6. Natural frequencies of fixed-fixed beam.Fig. 6. Natural frequencies of fixed­fixed beam.

Fig. 5. Displacement and force indices of fixed­fixed beam element.
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Fig. 7. Displacement and force indices of fixed-fixed beam elements.

The components of the state vector Z (i) (i = 1, 2, 3, ..., 16) (cf. Φ(i) in Eq. (2)) in index notation are

shown in Fig. 7. In the system of EST-method equations (52), the first eight equations represent the basic

equation (39) of the method. The following four equations represent compatibility of the displacements and

joint equilibrium at node b:

w(ab)
L − w(bc)

A ≡ Z (5)−Z (9) = 0,

ϕ(ab)
L − ϕ(bc)

A ≡ Z (6)−Z (10) = 0,

Q(ab)
L + Q(bc)

A ≡ Z (7)+Z (11) = Fb,

M(ab)
L + M(bc)

A ≡ Z (8)+Z (12) = 0.

(57)

Now we apply the boundary conditions as restrictions on support displacements:

w(ab)
A ≡ Z (1) = 0,

ϕ(ab)
A ≡ Z (2) = 0,

w(bc)
L ≡ Z (13) = 0,

ϕ(bc)
L ≡ Z (14) = 0.

(58)

The sparsity pattern of the coefficient matrix spA of Eqs (52) of the fixed-fixed beam with two elements

(Fig. 7) is shown in Fig. 8.

For the nontrivial solution of the homogeneous system (52), we will choose a free variable in accordance

with the natural frequency ωi (see program script excerpt 2.1).

The first mode shapes are found with a GNU Octave script. We divide the beam of length � into two

elements of lengths �1 and �2 (see program script excerpt 2.1). The fifth column is shifted to the right-hand

side and the equations are solved with the least-squares method. After finding the initial parameters, we

compile the mode shapes.

Compatibility equations of displacements 9−10

Joint equilibrium equations 11−12

Basic equations 1−8

0 4 8 12 16

16

12

4

0

8

Restrictions on support displacements 13−16

  spy(spA) − the sparse matrix spA(16,16) non−zero elements nnz = 52 [20%]

Fig. 8. Sparsity pattern of matrix spA of the fixed-fixed beam.

Fig. 7. Displacement and force indices of fixed­fixed beam elements.

Fig. 8. Sparsity pattern of matrix spA of the fixed­fixed beam.



248 Proceedings of the Estonian Academy of Sciences, 2020, 69, 3, 235–256

Program excerpt 2.1 (TalaKahelToelFFshape.m)
#CHOOSE A FREQUENCY wfs:

%wfs=496.574977 ## case{1} Mode shape 1 # wfHz = 79.032

wfs=1368.8280469 ## case{2} Mode shape 2 # wfHz = 217.86

%wfs=2683.450276 ## case{3} Mode shape 3 # wfHz = 427.08

%wfs=4435.8796194 ## case{4} Mode shape 4 # wfHz = 705.99

%wfs=6626.438860 ## case{5} Mode shape 5 # wfHz = 1054.6

%wfs=9255.1087056 ## case{6} Mode shape 6 # wfHz = 1473.0

if (wfs == 496.574977)

ModeShape=1

l1=0.11450; %% l=0.229 # m

l2=0.11450;

columns_to_remove = [5];

ScaleMultiplier=1.0e-00

titlJ=1;

elseif (wfs == 1368.8280469)

ModeShape=2

l1=0.06870;

l2=0.16030;

columns_to_remove = [5];

ScaleMultiplier=0.99e-00

titlJ=2;

elseif (wfs == 2683.450276)

ModeShape=3

l1=0.11450;

l2=0.11450;

columns_to_remove = [5];

ScaleMultiplier=0.92e-00

titlJ=3;

elseif (wfs == 4435.8796194)

ModeShape=4

l1=0.034350;

l2=0.194650;

columns_to_remove = [5];

ScaleMultiplier=1.0e-00

titlJ=4;

disp(’ ModeShape 4 ’)

elseif (wfs == 6626.438860)

ModeShape=5

l1=0.034350;

l2=0.194650;

columns_to_remove = [5];

ScaleMultiplier=0.95e-00

titlJ=5;

elseif (wfs == 9255.1087056)

ModeShape=6

l1=0.06870;

l2=0.16030;

columns_to_remove = [5];

ScaleMultiplier=-0.75e-00

titlJ=6;

endif

Figure 9 depicts the four displacement mode shapes of the fixed-fixed beam.
Steady-state forced vibration can be represented by response curves [28] with the eigenvalues (saddle

and star points) lying on the abscissa axis and the transversal displacement and elastic strain energy ampli-
tudes on the ordinate axis [29, p. 143].
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Fig. 9. Transversal displacement shapes of fixed-fixed beam modes.

In the real/actual work W (a)
i of internal forces, the kinematically admissible displacements are

W (a)
i =−U =−

∫ �

0

QzQ̂zk

2GAred
dx−

∫ �

0

MyM̂yk

2EIy
dx, (59)

where U is the elastic strain energy; GAred is the shear stiffness of a beam, and EIy is the flexural rigidity

of a beam.

The elastic energy U of a fixed-fixed beam calculated with Simpson’s rule:

Usum =
Δ�

3 ·2GAred

(
f 1(1)2 +4 f 1(2)2 +2 f 1(3)2 +4 f 1(4)2 +2 f 1(5)2 +4 f 1(6)2 +2 f 1(7)2

+4 f 1(8)2 + f 1(9)2)+ f 1(10)2 +4 f 1(11)2 +2 f 1(12)2 +4 f 1(13)2 +2 f 1(14)2

+4 f 1(15)2 +2 f 1(16)2 +4 f 1(17)2 + f 1(18)2
)

+
Δ�

3 ·2EIy

(
f 2(1)2 +4 f 2(2)2 +2 f 2(3)2 +4 f 2(4)2 +2 f 2(5)2 +4 f 2(6)2 +2 f 2(7)2

+4 f 2(8)2 + f 2(9)2)+ f 2(10)2 +4 f 2(11)2 +2 f 2(12)2 +4 f 2(13)2 +2 f 2(14)2

+4 f 2(15)2 +2 f 2(16)2 +4 f 2(17)2 + f 2(18)2
)
, (60)

where Δ� = �/16 and f 1(n) = Qz(0 + (n−1)Δ�), n = 1,2,3, . . . ,9, f 1(m) = Qz(0.5�+ (m−10)Δ�),
m = 10,11,12, . . . ,18 ( f 1(9) = Qz (0.5�− ε), f 1(10) = Qz (0.5�+ ε));
f 2(n) = My(0 + (n−1)Δ�),n = 1,2,3, . . . ,9, f 2(m) = My(0.5�+ (m−10)Δ�), m = 10,11,12, . . . ,18

( f 2(9) = My (0.5�− ε), f 2(10) = My (0.5�+ ε)).

Fig. 9. Transversal displacement shapes of fixed­fixed beam modes.
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Displacement shape at ω4 = 4.43588×103 s−1 Displacement shape at ω6 = 9.25512×103 s−1
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+4 f 1(8)2 + f 1(9)2)+ f 1(10)2 +4 f 1(11)2 +2 f 1(12)2 +4 f 1(13)2 +2 f 1(14)2

+4 f 1(15)2 +2 f 1(16)2 +4 f 1(17)2 + f 1(18)2
)

+
Δ�

3 ·2EIy

(
f 2(1)2 +4 f 2(2)2 +2 f 2(3)2 +4 f 2(4)2 +2 f 2(5)2 +4 f 2(6)2 +2 f 2(7)2

+4 f 2(8)2 + f 2(9)2)+ f 2(10)2 +4 f 2(11)2 +2 f 2(12)2 +4 f 2(13)2 +2 f 2(14)2

+4 f 2(15)2 +2 f 2(16)2 +4 f 2(17)2 + f 2(18)2
)
,
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To construct response curves, we use the particular solution Zp = ZF (Eq. (35)). After finding the initial

parameters, the displacements and forces are found with the transfer equations (37).

The star points are related to resonance [54, p. 521], and that is why the amplitude increases steadily,

approaching infinity.

Figures 10a,b show the steady-state frequency response curves of the fixed-fixed beam in the follow-

ing intervals of frequency ω:

ε < ω < ω1 − ε︸ ︷︷ ︸
1st interval

, ω1 + ε < ω < ω2 − ε︸ ︷︷ ︸
2nd interval

, ω2 + ε < ω < ω3 − ε︸ ︷︷ ︸
3rd interval

, ..., ωn + ε < ω < ωn+1 − ε︸ ︷︷ ︸
nth interval

, n = 1,2,3, ...,7.

On the frequency axis, the singular points 1, 3, 5, 7 are star points and 2, 4, 6 are saddle points.

On the frequency axis (ω-axis) (Fig. 10), the location of the natural frequencies ωk matches that of the

singular points lying on the same axis. Here the natural frequencies ωk with k = 1, 3, 5, ... are double real

auxiliary roots (Eq. (18)). Calculations show that near the singular points of odd numbers, the equilibrium

state is changing rapidly and signs of the amplitudes become reverse. The singular points are star points;

the equilibrium state is unstable. The elastic energy changes rapidly towards the maximum (see Fig. 10b).

Also located on the frequency axis (Fig. 10) are the natural frequencies ωk (k = 2, 4, 6, ...), which

are double imaginary auxiliary roots (Eq. (18)). Calculations show that near the singular points of even

numbers, the equilibrium state is changing slowly and signs of the amplitudes become reverse. The singular

points are saddle points. The equilibrium state is marginally stable (neutral/indifferent) (see Fig. 10b).

The neighbourhood of double imaginary characteristic roots in saddle points needs further investigation.

In saddle points, the pumping frequencies periodically shift “harmonics” [41, p. 18]. It is important to

perceive if there exist regions of “undetermined” states of equilibrium with the so-called “parasitic self-

excitation” (cf. gain of the pumping frequencies in saddle points). This phenomenon appears and disappears,

often caused by tiny variations of the parameters in these regions of equilibrium states [64, p. 658].

The saddle points are associated with dynamic vibration absorption described in [65] for LTI systems.

In Figs 11 and 12, the deflection, slope, shear force and bending moment amplitudes at saddle point

frequencies (the LTP system theory) of a fixed-fixed beam under steady-state forced vibrations are shown.
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Here work done by constraint forces, e.g., support reactions, internal reactions (the contact force acts at

the interconnection interface), is of zero value: Wboundaries = [Qzwz +Myϕy]
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Figure 13 illustrates the amplitudes of displacements and forces of the fixed-fixed beam at 60 Hz

frequency.
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Figure 14 illustrates the amplitudes of displacements and forces of the fixed-fixed beam at 100 Hz

frequency.

3. CONCLUSIONS

A modified transfer matrix method has been developed for solving the systems of first order differential

equations for vibration with a set of initial values and boundary conditions. Steady-state frequency response

curves of a beam are composed with singular points (star and saddle points) lying on the frequency axis of

the response curves. At these points, the frequencies coincide with these determined by the homogeneous

differential equation. Star points represent resonance frequencies. In the case of undamped vibration, dy-

namic vibration absorption takes place at saddle points.
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Modifitseeritud ülekandemaatriksmeetod talasüsteemi sundvõnkumise uurimiseks

Andres Lahe

On välja töötatud EST-meetodi rakendus varrassüsteemide sundvõnkumise uurimiseks. Euleri-Bernoulli

tala püsiseisundis võnkumise võrrandi üldlahendiga koostatakse võnkumise sagedustunnusjooned. Neil

eristatakse kaht tüüpi singulaarpunkte: mittestabiilsed sõlmed (ingl star points) ja sadulpunktid (ingl

saddle points). Varraste võnkumist kirjeldavad IV järku diferentsiaalvõrrandid asendatakse I järku dife-

rentsiaalvõrrandite süsteemiga koos vastavate algväärtuste ja rajatingimustega. Diferentsiaalvõrrandite

süsteemi lahendite uurimiseks on kasutatud modifitseeritud ülekandemaatriksmeetodit.
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