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Abstract. To find the approximate solutions of a weakly singular integral equation by the
collocation method it is necessary to solve linear systems whose coefficients are expressed
as integrals. These integrals cannot usually be computed exactly. We get the fully discrete
collocation method when we approximate the integrals by quadrature formulas on nonuniform
grid. In this paper an appropriate grid is formed and the dependence of the convergence rate of
this method on the choice of the grid is studied.
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1. INTRODUCTION

Consider the integral equation

b
u(zx) = /K(m,y)u(y)dy + f(x), 0<z<b, @
0

whose kernekK satisfies the following condition.

(A) The kernelK (x,y) is ~ times ¢ > 1) continuously differentiable with
respect tar andy for x,y € (0,b),  # y, whereby there exists a real number
v € (0,1) such that, for:, y € (0, ) and for all nonnegative integersandj, with
a+ 3 < «, the inequality

() (G ) o

<clr -y "

holds.
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From the assumption (A) it follows that for, y € (0,b), x # y anda+ 5 < ~
the inequality

aN*/o o0\’
‘(a,z) (52 ) K0
holds too [].

Such an integral equation can be effectively solved by the following piecewise
polynomial collocation method on graded grids (see, €Y., [
We divide the interval0, b] by the grid points

b(i\"
= —| = ) =0,1,...,N
x] 2<N)a.] ) ) )

<o -y (2)

TN+ = b—.fl?N_j, jzlv"'an

into 2N > 2 subintervaldz;_1,z;], j = 1,...,2N. Here the real number > 1
characterizes the nonuniformity of the grid. df= 1, then the grid points are
uniformly located. We choose: points¢y, &, . .., &y, in the interval[—1, 1] so
that

—1<6 << <6<
and define in every subintervial;_, z;], 7 = 1,...,2N, the collocation points

Sgtl _
g =xj—1+ 5 (x]—x]_l), g=1,...,m.

In every subinterval we search the approximate solution of Eq. (1) as the Lagrange
interpolation polynomial of degre@ — 1

m
UN(.’IJ) = ZUN(qu)@jq(x), T e [xj—laxj] ) ] = 17 cee 72N7
q=1
where
— fjp
©;i .
]q H qu - fjp
p#q

The values:y (§;,,) of the approximate solution we determine from the collocation
condition

b
~N(&p) = /K&p, (y)dy+ f(&p), t=1,...,2N, p=1,...,m,
0
or
2N m
Vi) =D aijgun(&ig) + f(&p), i=1,...,.2N, p=1,...,m, (3)
j=1q=1
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where

Ginga = / K (& )00y (4)

Such a collocation method uses the values of the integrals (4) which usually
cannot be computed analytically. A possibility of overcoming this difficulty is
offered by the product integration methotf]. Using this method we need to
compute exactly only the integrals containing the singular factor of the kernel
K (z,y). In this paper we replace the integrals (4) with quadrature sums discussed
in [?]. Such an approach is used alsofh [

2. APPROXIMATION OF THE COEFFICIENTS (4)

When computing the coefficients,;, it is necessary to take into account that
in general the kerndk (¢;,,, v) is unbounded in the neighbourhoodgf. Therefore
we use a nonuniform grid that is defined below. First we define the numbers

k S
2 = by (> . k=0,1,..., M,

vk = b1 (1+k%), k=1,2,...

where0 < by < b, M > N, ands > r.
If &p € (zi—1,24), then we present the coefficient,;, as the sum

4 +
Qipiq = Qipig T Aipigs

where
gip Ty
= [ Koy, afy, = [ KGponto)dy.
Ti—1 Eip

For the computation of the integrals in the intervids,, ;) and (z;_1, z;),
j=1+1,...,2N, we define for fixed andp the subinterval§y_1,yx) in the
following way. We take

vo="%p, Y1=vyo+ (z1—20), v2=uy1+ (22— 21),

and so on until
Yki—1 = Yk —2 + (2 =1 — 2 —2) < 74
and
Yki—1 + (2, — 261—1) > ;-
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Then we take
Yky = Tiy  Yki+1 = Yk + (2 — 201-1),
and so on until
Yky—1 = Yky—2 + (Zky—2 — Zky—3) < Tit1
and
Yky—1 + (Zk‘2—1 - Zk2_2) > Tt -

Then we takey,, = x;4+1. Continuing this way, we define the grid poinjs as
follows:

Ykj_s = Tj—15  Ykj_i+1 = Ykj_; + (Zk’j—i_]"f‘i"rl - ijfi_j"ri)a

and so on until

Ykj_iy1—1 = Ykj_;11-2 + (ijfz‘+1*j+i*1 - zkj—i+1*j+7;*2) <

and
Ykj_iv1—1 T (ij—i+1—j+i - ij—i+1—j+i—1) > Tj.
Then we takeyy, ., = x;. We proceed in a similar way fgr=14 +1,...,2N.
For the computation of the integrals (4) we choose a quadrature formula
L n
/(P(y)dy ~ > wd(m) (5)
el t=1

which is exact for all polynomials of degrege m — 1 < u < 2n — 1, and whose
knots satisfy the conditions

—1<m<m<...<n, < 1.
The corresponding knots in the interyal 1, yx] are

ne+1
Mkt = Yk—1 + tT(yk —Yp-1), t=1,....n.
The approximate valueg',, anda,,;, of the integrals:;’,

by the formulas (cf. T])

i, anda;y;, we compute

k1 n

~ Yk — Yk—1

Gfig = B — > Wik (Eipy kt) Pig (it
=2 =1

kj—it1 y y n (6)
- k — Yk—-1
dipjg = Y — > Wik (Eipy re) @i (Mt
k:kj_i—i-l t=1
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wherej =i+1,...,2N andqg = 1,...,m. We use these formulas also in the case
of &p = zi-1. Thena;p, = a;;m.q. If 2; — &p < 21, then we take”z;;iq = 0 and by
computation we replace witlhthe summand with the index=k; + 1 = 2.

In an analogical way we compute the integrals also in the intefvals , &;;,)
and(z;_1,z;),j =i— 1,9 —2,...,1. So we find the approximate values,;,
for all coefficientsa;,;, and form the fully discrete collocation method, in case of
which we compute the approximate valueg(&;,) of the solution of the integral
equation (1) from the system of equations

2N m

un (&ip) = Z Z Gipjqtn (§5q) + f(Eip),
Jj=lg=1 (7)

1=1,....,2N, p=1,...,m.
We write the systems (3) and (7) in a more concise form:
uy = Ayuny + fn (8)
and

in = Anin + fx, 9

where Ax = (aipjy) and Ax = (@pj,) are2Nm x 2Nm square matrices, and

uny = (un(&p)), an = (an(&p)) and fx = (f(&p)) are vectors witleNm
components. We use the norm of a vector

lunlloo = max |un(&p)]

1<p<m
and the corresponding norm of a matrix

2N m

[ANloe = e Z Z |@ipjaq]-

1Ep§m ]:1 q=1

For the errors of the approximate valuég;, of the coefficientsa;,;, the
following estimate holds.

Theorem 1.Let the kernelK satisfy the assumptiofA) withy = . —m + 2 and
the quadrature formul#5) be exact for all polynomials of degreggem — 1 < u <
2n —1,and N < M. Then

Mosaew g Lo pmmE3
- 1—v - 1—-v
— <
[An — Anllos <€ o ’ w—m+3
M-wtm=2 g s>
— VUV
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Proof. By change of the variable

§+1
@ =aj-1+ o (25 — 2j-1)
we get
m
— T — &

max  max |gj(r)] = max max —
ISISN @1 <esz; 1IN ;1 <a<a = &g = &

p7q

= max 1Imax = const.

1<g<m —1<¢<1

o f _'gp
gﬁq—fp
PF#q

We shall estimate the error of the approximate valyg, of a;,;, computed
by (6). Letk;—; < k < kj_;y1, Wwherej —i > 0 andky = 0. Then
[Yk—1, k] C [zj—1,7;]. Asin [’] we can show that

Yk n
Ril = ‘ [ B entdy - S wnK G psatm)
t=1

Yk—1
Yk

e [ 1K)~ vl

Yk—1

IN

whereu(y) is an arbitrary polynomial of degrge— m + 1 > 0. With the letterc
we denote a constant whose value changes from time to time and which does not
depend on, p, j,q, k, N, andM. If v is the Taylor polynomial

p—m—+1 aa ’
v(y) = Y LRy yi) (e,

!
= o oy~

then fork > 2, due to (2), we estimate

Yk — Y1 [P MK (Eip, y)
max |K(&p,y) — v < m
yk—1§y§yk‘ (&p y) (y)‘ (,u —m + 2)! Y1 <y<yk ayu—m+2
—V—ptm—2 —m+2
< eyt =Gl T ke — |
Thus, fork > 2
—v—ptm—2 —m+3
1Rie|l < elyr—1 —&p| "k — [T (10)
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If £k —j+i< M,then

(k—j+i)"
Ms

k—j+i—1\"_ _(k—Jj+i\°
Zh—jti-1 = b1 <jM> > 2 (&)

"Rk‘ < CM—S(I—V)(k, — i+ Z‘)S(l—u)—u+m_3
M*S(lfl/) if 8(1_V)S,U—m+37
c
MrEm=EAE s(1—v) 2 p—m+3.

[y — yk—1| < |zh—jri — 2h—jrio1| < bis

v

}yk:—l - 5@1)‘

and therefore

IN

Butif Kk —j 4+ > M, then

|k — Yk—1| < Zk—jri — Zh—jtio1 = bl% )
Y1 — &ip| = 20 = b1
and it follows from (10) that
‘Rk‘ < ¢ MTHEM=3,

As M—Htm=3 < M—s(0-v)if 5(1 — v) < p—m + 3, we get fori < j < 2N and
x; —&ip = 21

kj—iv1
}&iqu _ aiqu‘ < Z ‘Rk‘ < C(k?j—i-H — k)M~ min(s(1-v),u—m+3)
k=k;_;+1

Now we estimate

Y1 k1

g il < | [ (e, y)wiq<y>dy] 3R
& k=2
ip
As
Y1 Y1
/K(fvzp,y)soz-q(y)dy’ < C/(y—yo)‘”dy
ﬁip Yo
1—v
_ C(yl _y(]) < /le—y _ clb%—qu (171/)7



taking into account the estimate fg? ;| we get
a; + —min(s(1—v),u—m~+3
Gty — 0| < chy M min(s(—v)si=met3),

From these estimates it follows that

m 2N m
D i = adigl + D D linia — ainjal
q=1

Jj=i+1qg=1
< ck M min(s(1-v),p—m+3)
> CR2N—i+1 .

It is easy to check that these estimates hold alsg # &, < 2.
Note that

M
k‘zN—i+1§M+|b—b1|bTS+2N+1SCM-

The errors of the approximationis,;, and aiyjq of a;,;, andaipjq, j = i — 1,
i—2,...,1, are proved in an analogical way. This proves the theorem.

Remark. From the formulas (6) we see that the computation of 4h€ N2
elements of the matrid y takesO (N M) arithmetical operations.

3. THE CONVERGENCE OF THE FULLY DISCRETE
COLLOCATION METHOD

We prove the following result.

Theorem 2. Assume that the quadrature formuls) is exact for all polynomials
of degreeu, m — 1 < p < 2n — 1 and the integral equatiofil) has a unique
solutionu € L*°(0,b), whereas its kerneK satisfies the assumptig) with
v = max(m, u —m+2) and f € C™¥(0,b) (see[**]). Then there existdy > 0
so that forM > N > N, the systen{7) has a unique solutiody = (in(&ip))
and the following error estimate holds

max iy (&ip) = u(€yp)| < N~ im0 (12)
1<p<m

i m 1 p—m+3

If, in addition to these assumptions, the kndtsés,. .., &, satisfy the
condition

1
/(x—fl)(a:—gg)...(ac—§m)da¢:0, (12)
1
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the kernelK satisfies the assumptig¢A) with v = max(m + 1, u — m + 2) and
f € C™*tL¥(0,b), then for M > N > Ny,

max iy (§p) — u(&p)| < eN TR (13)
1<p<m

if r> and {1 <s< &5

Proof. It was proved in {] that under these assumptions there exiéts> 0 so
that for V > N there exist§1 — Ayx)~ L, ||(I — Ax)~!|| < ¢ and the collocation
method (3) converges with the rate

lun — ulloo = max "U,N(fip) — u(fip)‘ <cN™™ if > m
1<p<m
It follows from the equality
I — AN = (I - AN)[I - (I — AN)_l(AN - AN)]

and Theorem 1 that there existy > N so that forN > N, the system (9) has a
unique solutioniy = (an(&p)) and

lanlloo < (1 = AN) ool fvlloo < e
It follows from Eqs. (8) and (9) that
(I —AN)(iny —un) = (Ay — An)ay -
Thus, forN > N,
lan —unllo < (T = AN) "Mool AN — AN looll@n]loo

CM—S(I—V)—‘,—I < CN—s(l—V)-i-l

IN

e 1 —m+3
if i < S S %
Using the inequality
lan — ulloo < [Jin — unlloo + [lun — tlloo ,

we get the estimate (11).
Under the additional assumptions of Theorem 2 the collocation method (3)
converges with the raté-f]

lun — ttf|oo < eN“F0)f s 1& (14)

From this the estimate (13) follows.
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4. NUMERICAL EXAMPLE

We consider the integral equation

dy+ f(z), 0<z<l1,

1
wlz) — u(y)
) 0/\/w—y!
where
f(x):\/5—\/1—x—%x—xln(l%—Vl—x)—i—%ln:c.

The unique solution of this equationigz) = \/z. Heref € C7?%(0,1) and the
kernel K (z,y) = |= — y|~'/? satisfies the assumption (A) with= 0.5 for any
v 2> L

In Table 1 the norms of the errors

e = wlloo = max un(&p) — ()]
1<p<m

lin = ulloo = max [in (&) —ulip)],
1<p<m

and
2N m

1 AN — Aylloo = max > > [aipjg — Gipjl

1<p<m j=1 g=1

are presented. Herey = (un(&,)) anday = (an(&p)) are calculated by
the (exact) collocation method (3) and by the fully discrete collocation method
(7), respectively. Table 1 lists also the ratios of the errors calculated by dividing
the norm corresponding t&/2 by the norm corresponding t&. These ratios
characterize the rate of convergence.

Table 1. The norms of the errors

N ‘ lun — oo ‘ Ratio‘ lin — oo ‘ Ratio. AN — ANlloo ‘ Ratio

4 2.2E-2 2.4E-2 5.5E-3

8 3.6E-3 6.0 3.6E-3 6.6 4.8E—4 11.6
16 3.4E—4 10.6 3.4E—4 10.7 4.3E-5 111
32 2.5E-5 13.3 2.5E-5 13.6 3.8E—6 114
64 1.8E—6 14.4 1.8E—6 14.3 3.3E-7 114
128 1.2E-7 15.0 1.3E-7 13.8 3.0E-8 111
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For calculatingu anday, r = 4 is chosen and the knots of Simpson’s rule
are used as the collocation points. Then= 3, & = —1, & = 0, & = 1,
and the systems (3) and (7) contdilV + 1 equations and unknowns. Since these
knots satisfy the condition (12), the estimate (14) guarantees the convergence of the
(exact) collocation method with the raf® N =3-5) for » > 6 only. The ratio ought
to be approximatel23® ~ 11.3. From Table 1 we see that already in the case of
r = 4 the collocation method converges fasten: K 5, the errors are greater, and
if » = 6, they are still greater for all values of, though the rate of convergence is
nearly the same.

For computation onlN andu we chooses = 7, b1 = 0.5, M = 4N, and the
Gaussian quadrature with 3 knots for numerical integration. As seen from Table 1,
the approximate solutions obtained by the fully discrete collocation method and by
the collocation method have nearly the same accuracy. The convergence, however,
is somewhat quicker than Theorems 1 and 2 guaranteed.

Note that in this example we can calculate the coefficiepts as differences
of the corresponding antiderivatives, but then a significant loss of accuracy due to
round-off errors occurs foN = 64 and especially folV = 128. For getting the
results presented in Table 1 we reduced the round-off errors by transformation of
these differences. In the calculation of the coefficients, by formulas (6) the
round-off errors were smaller and it was not necessary to modify the formulas.
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TAIELIKULT DISKREETNE KOLLOKATSIOONIMEETOD NORGALT
SINGULAARSETE INTEGRAALVORRANDITE LAHENDAMISEKS

Enn TAMME

Nd&rgalt singulaarse integraalvérrandi lahislahendi leidmisel kollokatsiooni-
meetodiga tuleb lahendada lineaarseid vorrandisiisteeme, mille kordajad avalduvad
integraalidena. Neid integraale saab vaid erandjuhtudel tapselt leida. Taielikult
diskreetse kollokatsioonimeetodini jduame, kui ldhendame neid integraale
kvadratuurvalemite abil ebaihtlasel vorgul. Artiklis on moodustatud sobiv vork
ja selgitatud meetodi koonduvuskiiruse séltuvus vorgu valikust.
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