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Abstract. We study the spadg. of double sequencésy;), satisfyingli}m @lxm —al=0for

some numbes. In this note, using gliding hump arguments, we give necessary and sufficient
conditions for a 3-dimensional matrix (i.e. SM-method) to transform every convergent or
bounded sequende:) into the spac&, or Cp., the space of elements & with bounded
columns.
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1. INTRODUCTION AND PRELIMINARIES

The best known and well-studied convergence notion for double sequence
spaces is Pringsheim convergence. A double sequenggof complex (or real)
numbers is said toonverge to the limit in the sense of Pringsheiii

Ve>03aNeN: kJI>N = |z —al|<e.

In case of this convergence the row-indéxand the column-index tend
independently to infinity.

Boos et al. [] considered a more general notion of convergence, where, in
contrast to Pringsheim’s notion of convergence, the row-indelepends on the
column-index in tending to infinity. The space of all double sequences converging
in this way is denoted by.. More precisely,

Ce::{:UGQ\3@6KV€>OHZ0€NW2ZOEII<:ZEN:
kal = \xkl—alga}
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where() denotes the linear space of all complex (or real) double sequencé$ and
is the field of all complex (or real) numbers. In more detail the pajjatdals with
the subspace

Che 1= {x S Ce‘ Vie N: (xkl)k € m}

of C., wherem is the space of all bounded sequences. Note tha{ ¢ notation
C was used instead .

We refer the reader td}] for the basic terminology and notation concerning
the theory of locally convex spaces and sequence spaces.

We call linear subspaces éf double sequence spacedet V be a space
of double sequences converging with respect to a linear notion of convergence
V-lim : V — K. The sum of a double serigs ; uy, with respect to this notion
of convergence will be defined by->", juk = V-limy,n )1ty DL up.
GenerallyV will be omitted when no confusion may arise.

Let B = (bmnk) be a 3-dimensional matrix. The summability methBd
induced by the summability domain

Vp:=(z€w|Bz:= (Z bmnkzk> exists and Bz € V
k m,n

and the limit functional

V-limp : Vp —: K, z+— V- 1imz brmnk 2k
T L

is called av-SM-methodcf. [1]). Following ['], a sequence of numbets= (z;)
is said to besummable by &-SM-methodB to a numbers if the limit V-limp 2z
exists and is equal te,

In ['] the consistency and the structure of summability domaing,oSM-
methods are examined. Our aim is to give necessary and sufficient conditions for
a Ce-SM- (Cpe-SM-) methodB = (b,,nx) to beconservativgi.e. to sum every
convergent sequence) coercive(i.e. to sum every bounded sequence).

Remark 1.1. The summation in Volkov's sense (cf*]] can be considered as
a specialC.-SM-method. Given a matrid = (a,), We put b,k := ayy for
k=1,...,mandb,,,; := 0 otherwise(m,n € N). Then the summability domain
Cep Of the C.-SM-methodB = (b,,) coincides with the domaiv, of all
sequences, summable Byin Volkov’s sense, and.-lim g x equalsV/-lim 4 = for
allz € Cep.

2. CONSERVATIVE SM-METHODS
In ['], Theorem 2.4, it was proved th&} is an LFH-space (i.e. it can be
written as a union of countably many FH-spacép,with H = Q. More precisely,
C. =, C! where
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Cl .= {x € Q| suplim|zy| < oo and Ja € K : (mml — a|) € co}
I>n k k I>n

is an FH-space witlll = Q2 (n € N). Note thatC} = C,.. We will verify that for
every conservativ€.-SM-methodB there existdV € N such thatB mapsc into
CN. Here we will make use of the following result.

Lemma 2.1(cf. [?], Theorem 4.2.2)LetY be an FH-spaceX an F-spaceand
T:X — Yalinear map. IfT : X — H is continuousthenT : X — Y is
continuous.

Lemma 2.2.Let E be an FK-space and suppose tlfat= | J,, F;, is an LFH-space
with H = Q and F,, C F,41 (n € N). If a 3-dimensional matrixB = (b,,x)
mapsE into F', then there exist&’ € N such thatB(E) C Fy.

Proof. By Lemma 2.1 the matrix may is continuous, hence (cf.’]} 19.5 (4))
there existsV € N such thatB(E) C F. ¥

Theorem 2.3. A 3-dimensional matrixB = (b,,,x) mapsc into C, if and only if
each of the following conditions holds
(i) for everyk € N the limitby, := Ce-limy,, 5, by €XIStS
(ii) >k [bpnk| < oo forall m,n € N,
(iii) the limitv := Ce-limy, », > ) bk €XiStS
(iv) there existsV € N such thatup,,cy >, |bmnk| < oo forall n > N, and
(v) for every index sequencé.,,) there existsV € N such that

Ly

M := sup lim bimni| < 0.
n>N ™ ;|mn|

Under these circumstance®y) € ¢ and

limpx = Zbkl’k + (v — Zbk> li}]énxk (x € c).
k k

Proof.

Necessity.The Necessity of (i)—(iii) is evident.

(iv) By Lemma 2.2 there exist&/ € N such thatB(c) c CY. For every
m,n € N we consider the operat@?,,,,, : ¢ — R, By, : @ +— [BZ]my. Since the
sequence of operatof®,,,, ), is pointwise bounded for every > N, (iv) follows
from the Uniform Boundedness Principle.

(v) Since B is a continuous operator frominto C¥ (cf. Lemma 2.1), there
existsK € N such that

o0
sup lim| menkxkl <K | 2 |loo forevery z € c.
nzN- "™
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Let (L,,) be an index sequence. By (iv)

Ly,
supz [brmnk| < Supz |brnk| =: My, < oo for n> N.
M k=1 ™ok

Let (m;,) be a double sequence satisfying

Ln, Ly,

Passing to a subsequencegof;, ); if necessaryn € N), we may suppose that
sgn%(bmilnnk) = sgn%(bmhnnk) fork=1,...,Ly; t1,12 € N, n > N.

For every fixedn > N we puty;, := sgnR(by,,,nx) for 1 < k < L, andyy := 0
otherwise. Ther| ¥ ||.o< 1 and

Ly
k=1 k

Analogouslylim,, 35", |S(bmnt)| < K. SOsup,s n limy, S8 [bunk| < 2K

Sufficiency. Note that (i) and (v) imply(b;) € £. Really, by (i) for a fixed
s € Nwe may findn > max{N, s} such thalim,, > _; [byni — bx| < 1. Hence
by (v) we getd 7, |br| < 1+ sup;sy lim; D5 [bijr| < oo.
It is sufficient to verify thatB mapscy into C., since in this case by (iii) the
limit
limp x = limz; - Ce-lim Z bynk + Ce-lim Z bk (2 — lim z;)
7 m,n . m,n . 7

exists for everyr € c.

So letz € ¢y ande > 0 be arbitrarily fixed. By (iv) we may findV; € N
such thath,, := sup,,cy >k |bmnk| < 0o (n > Np). Now we choose an index
sequencéL,) such thatzy| < e/(4M,,) for k > L,,. By (v) there existN, > Ny,
M > 0 and an index sequenc¢er,,) such thaty =" |b,,,.] < M forall n > Ny,
m > my,. Selectl € Nwith >"7° . |by| < 1and|zy| <e/(4M) fork > K. By
(i) we may findN3 > N, and an index sequenéez,) with m,, > m,, (n > N3)
such that> & [byuni — bil|zk| < /4 for all n > N3 andm > m!,. Now for
everyn > N3 andm > m/, we get

} > bmnktr — Y bkxk‘
k s

L, fo'e) [e%s}
13 g 13
k=K k=K " k=L,

M=

<

B
Il

1

Hencelimpx = >, bypxy. ¥
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Note that condition (ii) is independent of all others. The maBix="(b,,,x)
with b1y, := (=1)¥/k andb,,,., == 0 (m,n, k € N; (m,n) # (1,1)) satisfies all
the hypotheses of Theorem 2.3 except (ii). At the same time it is possible to find
x € c such that the seri€s, b1, diverges.

Theorem 2.4. A 3-dimensional matrixB = (b,,,x) mapsc into Cy. if and only if
each of the following conditions holds

(i) for everyk € N the limitby, := Cpe-limy, p, byni EXIStS

(i) sup,,en 2k |bmnk| < oo forall n € N,

(iii) the limitv := Cpe-limy, 1, Y . bk €XiSts and

(iv) sup,, lim,, Zﬁ;l |bmnk| < oo for every index sequencé.,).

Under these circumstance®y,) € ¢ and

limgpz = Zbkmk -+ (v — Zbk> lilgnxk (x € ¢).
k k

Proof.

Necessity.(i) and (iii) are evident; (ii) and (iv) follow from Theorem 2.3, since
for every fixedn € N the matrix(b,, .1 )m, ;. Mapsc into m.

Sufficiency. By Theorem 2.3 the limi€,-lim,, ,,[Bz|nm, exists for any fixed
z € c. Now (iv) implies that([Bz|mn)m € m for everyn € N. Hence for every
x € cthe limit Cpe-limy,, ,,[Bx]p, €Xists.V

3. COERCIVE SM-METHODS

Theorem 3.1. A 3-dimensional matrixB = (b,,,x) mapsm into C. if and only if
each of the following conditions holds

(i) for everyk € N the limitby, := Cc-limyy, y, bk €XIStS

(ii) >k [bpnk| < oo forall m,n € N,

(iii) there existsV € N such thatup,,> y limy, >, [bimnk| < oo, and

(iv) lim,, lim,, Zk |brmnk — bk| = 0.

Under these circumstance®y,) € ¢ and

limpx = Zbkxk (JE S m)
k

In proving this proposition we make use of two nonsummability lemmas
involving gliding hump arguments.
Lety: N x N — N be a bijection defined inductively by

(p[(l, 1)] =1, 90[(172)] =2, 90[(2> 1)} =3;
(n—1)n (n—1)n

el(1,n)] = 5 +1, ¢[(2,n—-1)]= 5 +2, ...,
oltn, 1) = "L,
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Letm; : NxN — N, (a,b) - aandmy : NxN — N, (a,b) — b be the
projection maps. We put; := mp ! (i = 1,2).

We say that a double sequente;;) in N is increasingif m; j11 > m;;
(1,7 € N).

In proving the lemmas mentioned above we will use the following

Remark 3.2. Let a 3-dimensional matri® = (b,,,,1) andz € w be fixed. If there
exists an index sequen¢e;) and an increasing double sequeriog;) in N such
thatz ¢ Cep, WhereD := (bp, k)i 5.k thenz & Cep.

Lemma 3.3.Let B = (b)) be a3-dimensional matrix such that

o0
supz |bmnk| < oo (n€N) and lignlign@Z |bmnk| # 0.
™ok k=s

Then there exists an € m\C.p.

Proof. Without loss of generality we may suppose that there exists an index
sequencén,.) such that

limBim Y [R(bon,s)| > 57 (r € N)
k=s

for some suitably chosen > 0.
Settings,1 := 0 (r € N), we choose inductively increasing double sequences
(urj) and(s,;) of indexes such that

Z ’%(bur]‘nrk)’ > 4y, Z |burjnrk| <~ (r,j €N).
k=s,;+1 k=srji1+1
So
Sr,j+1
> [ROu k)l >3y (rjeN).
k:Sr]'—l-l
Settingtl = 811 and puttingtr = 3)\1(7’)jr’ m>\1(,")>\2(7‘) = 'u>\1(7“)jr for

r > 1, wherej, € N is chosen such thaty y;, > S\ (—1),_1+1, W€

obtain an index sequendg;) and an increasing double sequernee;;) such
. t;

that (m;;); is a subsequence @fuij);, >2; 11 [bmy (iyx,0ma, okl > 37 and

D okmtiga+1 10ms, agma, ookl <7 (@€ N).

Fixingz, :=0fork <ti,fork=¢,+1,...,t;+1 we put
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sgn %(bmwfl(i)”/\l(i)k) if )\2(7,) =1
t; t;
T = or Y Rbmy, 5y y1ma, 010 < D ROy 5, omay 01201
1=1 1=1
| —sen %(bmwl(nnh(i)k) otherwise.
Then
t; tit1
’Z R(Orma, 1701, 0 62H) — Z RO, 2y, 1 £F)
k=1 k=1
tit1
> Ry, oy wmag k)| > 37 (€N Xg(d) > 1).
k=t;+1
Hence
%([Bx]mxl<i>,A2<z’>—1nA1(z‘> - [Bx]mhu)xz(i)ml(i))
- ‘%<Z bmmw,mw—l"h(i>k$k> - %(Z bmmmzumxl(nkﬂ”k)
k k
tit1 [e’s)
= Z IR, iyng iy, )| = Z 1By oy 2178, (1
k=t;+1 k=t;+1
o0
- Z [, iyrg s ok
k=t;11+1

> 3 —y-v =7
for everyi € N with A\o(7) > 1. Therefore, by Remark 3.2,¢ C.5. ¥
Lemma 3.4.Let B = (b)) be a3-dimensional matrix such that
Ce-1im by =0 (k €N)  and  HmlHmTm Y  |bpnk| = 0.
Re} n s m i
If limy, limyy, Y. [bmnk| # 0, then there exists an € m\C.p.

Proof. Without loss of generality we may assume that there exista0 and an
index sequencé:)) such that

m Y [R(bynr)| > 57 (i€ N).
k
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Fixing k; := 1, we construct inductively two index sequendgs) and (n;)
choosing the second sequence as a subsequefc)of

Suppose thaty, ..., k- andnq,...,n,_1 are fixed. Then we may choosg
from (n9)) such thatz, > n,_; and

k. 0o
lim g |bmn, k| <7 and limlim E b, k] < -
m S m

k=1 k=s

Now we takek, 1 with k,,1 > k, such thatim,, > bk i1 [bmn,k| <. Hence

k'r+1
lim Z |%(bmnrk)‘ > 3y (T € N)
" k=kr+1

Then we find an increasing double sequefieg;) such that

senR (b, inok) = SEOR (b, n, k) for b=k +1,... kry1,

o kr k'r+1
S bkl < D bkl <0 D0 [R(bmyynn)l > 3y
k:kr+1+1 k=1 k=k,+1

forallr,i,j € N. We puty, := 0 for k < k1 andzy, := (—1)"sgn¥(by,, ;n,x) for
kr <k <kyy1 (r € N). Thenz € m and for allr, i, ; € N we get

%([B‘/L‘}mrjnr - [Bﬁ]qu»l,inr-ﬁ—l)

= ‘Z ‘%(bmrjnrkxk) - Z éR(bffbr-~-1,z'7%+1kxk)‘
k

k

kry1 krt2 ky
2 Z |§R(bm7~jnrk)‘ + Z ‘%(bmr+l,inr+1k)| - Z|bmrjn'rk|
k=kr+1 k=kr 4141 k=1
kri1 00 00
- Z|bmr.+1,inr+1k| - Z |bmr-j77/rk’| - Z |bm'r+1,inr+1k
k=1 k=kr41+1 k=kr42+1

> 3y 43y —4y=2.

Hence, by Remark 3.2, ¢ C.p5. V¥
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Proof of Theorem 3.1

Necessity.(i) and (ii) are evident.

(iii) By Lemma 2.2 there exist&V ¢ N such thatB(m) c CY. Applying
Lemma 3.3 to the matrixby, ,+ v k), We getlim, limg lim,, "5 [bmnk| = 0.
Hence there exists an index sequefitg) such that

oo
sup lim lim g |brnk| < oo.
S m
nzN k=Ln+1

By Theorem 2.3 (Vyup,, y lim,, Zé;l |brmnk| < oo. Hence (iii) follows.

(iv) By (i) and (iii) we get(b;) € ¢. We may assume that = 0 (k € N). So
(iv) follows by Lemma 3.4.

Sufficiency. From (i) and (iii) it follows that the series) , |byxy|
converges for every € m. Let vy, := > ) |bmnk — bk| (m,n € N). By (iv)

limy, lim,, | Ymn| = 0. FOr everyz € m we get

k k

HenceCe—limm,n Zk bk Tr = Zk brxry. Som C Cog. ¥

Theorem 3.5.A 3-dimensional matrixB = (b,,,,) mapsm into Cy. if and only if
B satisfieqiv) of TheorenB8.1and

(") for everyk € N the limitby, := Cpe-limy, , bypi €XIStS

(i) sup,, limy, Y4 |bmnk| < oc.

Under these circumstance®y,) € ¢ and

limpz =), by (x €m).
Proof. It may be obtained in the same way as the proof of Theoremv3.1.
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KOONDUVUST SAILITAVAD JA TEKITAVAD SM-MENETLUSED

Maria ZELTSER

On vaadeldud topeltjadade ruumi
Ce:={z = (z1)|Fa € K: lim lim |zg; — a|] = 0}.
l—00 k—o0

Libiseva kudru meetodi abil on leitud tarvilikud ja piisavad tingimused selleks,
et kolmemddtmeline maatriks (ehk SM-menetlus) teisendaks iga koonduva voi
tokestatud jadézry,) ruumiC, vOi tema alamruumi

Cbe::{33€C5| VIieN: (ﬂfkl)ke m}
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