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Abstract. We study the spaceCe of double sequences(xkl), satisfyinglim
l

lim
k
|xkl−a|=0 for

some numbera. In this note, using gliding hump arguments, we give necessary and sufficient
conditions for a 3-dimensional matrix (i.e. SM-method) to transform every convergent or
bounded sequence(xk) into the spaceCe or Cbe, the space of elements inCe with bounded
columns.

Key words: summability, SM-methods, gliding hump method, theorems of Toeplitz–
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1. INTRODUCTION AND PRELIMINARIES

The best known and well-studied convergence notion for double sequence
spaces is Pringsheim convergence. A double sequence(xkl) of complex (or real)
numbers is said toconverge to the limita in the sense of Pringsheimif

∀ε > 0 ∃N ∈ N : k, l > N ⇒ | xkl − a |< ε.

In case of this convergence the row-indexk and the column-indexl tend
independently to infinity.

Boos et al. [1] considered a more general notion of convergence, where, in
contrast to Pringsheim’s notion of convergence, the row-indexk depends on the
column-indexl in tending to infinity. The space of all double sequences converging
in this way is denoted byCe. More precisely,

Ce : =
{
x ∈ Ω| ∃a ∈ K ∀ε > 0 ∃l0 ∈ N ∀l ≥ l0 ∃kl ∈ N :

k ≥ kl ⇒ |xkl − a| ≤ ε
}

=
{

x ∈ Ω| ∃a ∈ K : lim
l

lim
k
|xkl − a| = 0

}
,
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whereΩ denotes the linear space of all complex (or real) double sequences andK
is the field of all complex (or real) numbers. In more detail the paper [1] deals with
the subspace

Cbe :=
{
x ∈ Ce| ∀l ∈ N : (xkl)k ∈ m

}
of Ce, wherem is the space of all bounded sequences. Note that in [1] the notation
Ĉ was used instead ofCbe.

We refer the reader to [2,3] for the basic terminology and notation concerning
the theory of locally convex spaces and sequence spaces.

We call linear subspaces ofΩ double sequence spaces. Let V be a space
of double sequences converging with respect to a linear notion of convergence
V- lim : V → K. The sum of a double series

∑
k,l ukl with respect to this notion

of convergence will be defined byV-
∑

k,l ukl := V-limm,n
∑m

k=1

∑n
l=1 ukl.

GenerallyV will be omitted when no confusion may arise.
Let B = (bmnk) be a 3-dimensional matrix. The summability methodB

induced by the summability domain

VB :=

z ∈ ω| Bz :=

(∑
k

bmnkzk

)
m,n

exists and Bz ∈ V


and the limit functional

V-limB : VB →: K, z 7→ V- lim
m,n

∑
k

bmnkzk

is called aV-SM-method(cf. [1]). Following [1], a sequence of numbersz = (zk)
is said to besummable by aV-SM-methodB to a numbers if the limit V-limB z
exists and is equal tos.

In [1] the consistency and the structure of summability domains ofCbe-SM-
methods are examined. Our aim is to give necessary and sufficient conditions for
a Ce-SM- (Cbe-SM-) methodB = (bmnk) to beconservative(i.e. to sum every
convergent sequence) orcoercive(i.e. to sum every bounded sequence).

Remark 1.1. The summation in Volkov’s sense (cf. [4]) can be considered as
a specialCe-SM-method. Given a matrixA = (ank), we put bmnk := ank for
k = 1, . . . ,m andbmnk := 0 otherwise(m,n ∈ N). Then the summability domain
CeB of the Ce-SM-methodB = (bmnk) coincides with the domainVA of all
sequences, summable byA in Volkov’s sense, andCe-limB x equalsV -limA x for
all x ∈ CeB.

2. CONSERVATIVE SM-METHODS

In [1], Theorem 2.4, it was proved thatCe is an LFH-space (i.e. it can be
written as a union of countably many FH-spaces, [3]) with H = Ω. More precisely,
Ce =

⋃
n Cn

e , where
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Cn
e :=

{
x ∈ Ω| sup

l≥n
lim
k
|xkl| < ∞ and ∃a ∈ K :

(
lim
k
|xkl − a|

)
l≥n

∈ c0

}
is an FH-space withH = Ω (n ∈ N). Note thatC1

e = Cbe. We will verify that for
every conservativeCe-SM-methodB there existsN ∈ N such thatB mapsc into
CN

e . Here we will make use of the following result.

Lemma 2.1(cf. [3], Theorem 4.2.2).Let Y be an FH-space, X an F-space, and
T : X → Y a linear map. IfT : X → H is continuous, thenT : X → Y is
continuous.

Lemma 2.2.LetE be an FK-space and suppose thatF =
⋃

n Fn is an LFH-space
with H = Ω and Fn ⊂ Fn+1 (n ∈ N). If a 3-dimensional matrixB = (bmnk)
mapsE into F , then there existsN ∈ N such thatB(E) ⊂ FN .

Proof. By Lemma 2.1 the matrix mapB is continuous, hence (cf. [5], 19.5 (4))
there existsN ∈ N such thatB(E) ⊂ FN . H

Theorem 2.3. A 3-dimensional matrixB = (bmnk) mapsc into Ce if and only if
each of the following conditions holds:

(i) for everyk ∈ N the limit bk := Ce-limm,n bmnk exists,
(ii)
∑

k |bmnk| < ∞ for all m,n ∈ N,
(iii) the limitv := Ce-limm,n

∑
k bmnk exists,

(iv) there existsN ∈ N such thatsupm∈N
∑

k |bmnk| < ∞ for all n ≥ N , and
(v) for every index sequence(Ln) there existsN ∈ N such that

M := sup
n≥N

lim
m

Ln∑
k=1

|bmnk| < ∞.

Under these circumstances, (bk) ∈ ` and

limB x =
∑

k

bkxk +
(
v −

∑
k

bk

)
lim
k

xk (x ∈ c).

Proof.
Necessity.The Necessity of (i)–(iii) is evident.
(iv) By Lemma 2.2 there existsN ∈ N such thatB(c) ⊂ CN

e . For every
m,n ∈ N we consider the operatorBmn : c → R, Bmn : x 7→ [Bx]mn. Since the
sequence of operators(Bmn)m is pointwise bounded for everyn ≥ N , (iv) follows
from the Uniform Boundedness Principle.

(v) SinceB is a continuous operator fromc into CN
e (cf. Lemma 2.1), there

existsK ∈ N such that

sup
n≥N

lim
m
|
∞∑

k=1

bmnkxk| ≤ K ‖ x ‖∞ for every x ∈ c.
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Let (Ln) be an index sequence. By (iv)

sup
m

Ln∑
k=1

|bmnk| ≤ sup
m

∑
k

|bmnk| =: Mn < ∞ for n ≥ N.

Let (min) be a double sequence satisfying

lim
i

Ln∑
k=1

|bminnk| = lim
m

Ln∑
k=1

|bmnk| (n ≥ N).

Passing to a subsequence of(min)i if necessary(n ∈ N), we may suppose that

sgn<(bmi1nnk) = sgn<(bmi2nnk) for k = 1, . . . , Ln; i1, i2 ∈ N, n ≥ N.

For every fixedn ≥ N we putyk := sgn<(bm1nnk) for 1 ≤ k ≤ Ln andyk := 0
otherwise. Then‖ y ‖∞≤ 1 and

lim
m

Ln∑
k=1

|<(bmnk)| = lim
i

∣∣∣<(∑
k

bminnkyk

)∣∣∣ ≤ K.

Analogously,limm
∑Ln

k=1 |=(bmnk)| ≤ K. Sosupn≥N limm
∑Ln

k=1 |bmnk| ≤ 2K.

Sufficiency. Note that (i) and (v) imply(bk) ∈ `. Really, by (i) for a fixed
s ∈ N we may findn ≥ max{N, s} such thatlimm

∑s
k=1 |bmnk − bk| ≤ 1. Hence

by (v) we get
∑s

k=1 |bk| ≤ 1 + supi≥N limj
∑i

k=1 |bijk| < ∞.
It is sufficient to verify thatB mapsc0 into Ce, since in this case by (iii) the

limit

limB x = lim
i

xi · Ce- lim
m,n

∑
k

bmnk + Ce- lim
m,n

∑
k

bmnk(xk − lim
i

xi)

exists for everyx ∈ c.
So letx ∈ c0 andε > 0 be arbitrarily fixed. By (iv) we may findN1 ∈ N

such thatMn := supm∈N
∑

k |bmnk| < ∞ (n ≥ N1). Now we choose an index
sequence(Ln) such that|xk| ≤ ε/(4Mn) for k ≥ Ln. By (v) there existN2 > N1,
M > 0 and an index sequence(mn) such that

∑Ln
k=1 |bmnk| ≤ M for all n ≥ N2,

m ≥ mn. SelectK ∈ N with
∑∞

k=K |bk| ≤ 1 and|xk| ≤ ε/(4M) for k ≥ K. By
(i) we may findN3 > N2 and an index sequence(m′

n) with m′
n > mn (n ≥ N3)

such that
∑K

k=1 |bmnk − bk||xk| ≤ ε/4 for all n ≥ N3 andm ≥ m′
n. Now for

everyn ≥ N3 andm ≥ m′
n we get∣∣∣∑

k

bmnkxk −
∑

k

bkxk

∣∣∣
≤

K∑
k=1

|bmnk − bk||xk|+
ε

4M

Ln∑
k=K

|bmnk|+
ε

4

∞∑
k=K

|bk|+
ε

4Mn

∞∑
k=Ln

|bmnk| ≤ ε.

HencelimB x =
∑

k bkxk. H
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Note that condition (ii) is independent of all others. The matrixB = (bmnk)
with b11k := (−1)k/k andbmnk := 0 (m,n, k ∈ N; (m,n) 6= (1, 1)) satisfies all
the hypotheses of Theorem 2.3 except (ii). At the same time it is possible to find
x ∈ c such that the series

∑
k b11kxk diverges.

Theorem 2.4. A 3-dimensional matrixB = (bmnk) mapsc into Cbe if and only if
each of the following conditions holds:

(i) for everyk ∈ N the limit bk := Cbe-limm,n bmnk exists,
(ii) supm∈N

∑
k |bmnk| < ∞ for all n ∈ N,

(iii) the limitv := Cbe-limm,n
∑

k bmnk exists, and
(iv) supn limm

∑Ln
k=1 |bmnk| < ∞ for every index sequence(Ln).

Under these circumstances, (bk) ∈ ` and

limB x =
∑

k

bkxk +
(
v −

∑
k

bk

)
lim
k

xk (x ∈ c).

Proof.
Necessity.(i) and (iii) are evident; (ii) and (iv) follow from Theorem 2.3, since

for every fixedn ∈ N the matrix(bmnk)m,k mapsc into m.
Sufficiency. By Theorem 2.3 the limitCe-limm,n[Bx]mn exists for any fixed

x ∈ c. Now (iv) implies that([Bx]mn)m ∈ m for everyn ∈ N. Hence for every
x ∈ c the limit Cbe-limm,n[Bx]mn exists.H

3. COERCIVE SM-METHODS

Theorem 3.1. A 3-dimensional matrixB = (bmnk) mapsm into Ce if and only if
each of the following conditions holds:

(i) for everyk ∈ N the limit bk := Ce-limm,n bmnk exists,
(ii)
∑

k |bmnk| < ∞ for all m,n ∈ N,
(iii) there existsN ∈ N such thatsupn≥N limm

∑
k |bmnk| < ∞, and

(iv) limn limm
∑

k |bmnk − bk| = 0.
Under these circumstances, (bk) ∈ ` and

limB x =
∑

k

bkxk (x ∈ m).

In proving this proposition we make use of two nonsummability lemmas
involving gliding hump arguments.

Let ϕ : N× N → N be a bijection defined inductively by

ϕ[(1, 1)] = 1, ϕ[(1, 2)] = 2, ϕ[(2, 1)] = 3;

ϕ[(1, n)] =
(n− 1)n

2
+ 1, ϕ[(2, n− 1)] =

(n− 1)n
2

+ 2, . . . ,

ϕ[(n, 1)] =
n(n + 1)

2
.
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Let π1 : N × N → N, (a, b) → a andπ2 : N × N → N, (a, b) → b be the
projection maps. We putλi := πiϕ

−1 (i = 1, 2).
We say that a double sequence(mij) in N is increasing if mi,j+1 > mij

(i, j ∈ N).
In proving the lemmas mentioned above we will use the following

Remark 3.2. Let a 3-dimensional matrixB = (bmnk) andx ∈ ω be fixed. If there
exists an index sequence(ni) and an increasing double sequence(mij) in N such
thatx 6∈ CeD, whereD := (bmijnik)i,j,k, thenx 6∈ CeB.

Lemma 3.3.LetB = (bmnk) be a3-dimensional matrix such that

sup
m

∑
k

|bmnk| < ∞ (n ∈ N) and lim
n

lim
s

lim
m

∞∑
k=s

|bmnk| 6= 0.

Then there exists anx ∈ m\CeB.

Proof. Without loss of generality we may suppose that there exists an index
sequence(nr) such that

lim
s

lim
m

∞∑
k=s

|<(bmnrk)| > 5γ (r ∈ N)

for some suitably chosenγ > 0.
Settingsr1 := 0 (r ∈ N), we choose inductively increasing double sequences

(µrj) and(srj) of indexes such that

∞∑
k=srj+1

|<(bµrjnrk)| > 4γ,
∞∑

k=sr,j+1+1

|bµrjnrk| < γ (r, j ∈ N).

So
sr,j+1∑

k=srj+1

|<(bµrjnrk)| > 3γ (r, j ∈ N).

Setting t1 := s11 and puttingtr := sλ1(r)jr
, mλ1(r)λ2(r) := µλ1(r)jr

for
r > 1, where jr ∈ N is chosen such thatsλ1(r)jr

> sλ1(r−1),jr−1+1, we
obtain an index sequence(ti) and an increasing double sequence(mij) such
that (mij)j is a subsequence of(µij)j ,

∑ti+1

k=ti+1 |bmλ1(i)λ2(i)nλ1(i)k| > 3γ and∑∞
k=ti+1+1 |bmλ1(i)λ2(i)nλ1(i)k| < γ (i ∈ N).

Fixing xk := 0 for k ≤ t1, for k = ti + 1, . . . , ti+1 we put
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xk :=



sgn <(bmϕ−1(i)nλ1(i)k) if λ2(i) = 1

or
ti∑

l=1

<(bmλ1(i),λ2(i)−1nλ1(i)lxl) <

ti∑
l=1

<(bmλ1(i)λ2(i)nλ1(i)lxl),

−sgn <(bmϕ−1(i)nλ1(i)k) otherwise.

Then∣∣∣ ti∑
k=1

<(bmλ1(i),λ2(i)−1nλ1(i)kxk)−
ti+1∑
k=1

<(bmλ1(i)λ2(i)nλ1(i)kxk)
∣∣∣

≥
ti+1∑

k=ti+1

|<(bmλ1(i)λ2(i)nλ1(i)k)| > 3γ (i ∈ N : λ2(i) > 1).

Hence

<
(
[Bx]mλ1(i),λ2(i)−1nλ1(i)

− [Bx]mλ1(i)λ2(i)nλ1(i)

)
=

∣∣∣∣<(∑
k

bmλ1(i),λ2(i)−1nλ1(i)kxk

)
−<

(∑
k

bmλ1(i)λ2(i)nλ1(i)kxk

)∣∣∣∣
≥

ti+1∑
k=ti+1

|<(bmλ1(i)λ2(i)nλ1(i)k)| −
∞∑

k=ti+1

|bmλ1(i),λ2(i)−1nλ1(i)k|

−
∞∑

k=ti+1+1

|bmλ1(i)λ2(i)nλ1(i)k|

≥ 3γ − γ − γ = γ

for everyi ∈ N with λ2(i) > 1. Therefore, by Remark 3.2,x 6∈ CeB. H

Lemma 3.4.LetB = (bmnk) be a3-dimensional matrix such that

Ce- lim
m,n

bmnk = 0 (k ∈ N) and lim
n

lim
s

lim
m

∞∑
k=s

|bmnk| = 0.

If limn limm
∑

k |bmnk| 6= 0, then there exists anx ∈ m\CeB.

Proof. Without loss of generality we may assume that there exist aγ > 0 and an
index sequence(n(i)) such that

lim
m

∑
k

|<(bmn(i)k)| > 5γ (i ∈ N).
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Fixing k1 := 1, we construct inductively two index sequences(ki) and (ni)
choosing the second sequence as a subsequence of(n(i)).

Suppose thatk1, . . . , kr andn1, . . . , nr−1 are fixed. Then we may choosenr

from (n(j)) such thatnr > nr−1 and

lim
m

kr∑
k=1

|bmnrk| < γ and lim
s

lim
m

∞∑
k=s

|bmnrk| < γ.

Now we takekr+1 with kr+1 > kr such thatlimm
∑∞

k=kr+1+1 |bmnrk| < γ. Hence

lim
m

kr+1∑
k=kr+1

|<(bmnrk)| > 3γ (r ∈ N).

Then we find an increasing double sequence(mrj) such that

sgn<(bmrinrk) = sgn<(bmrjnrk) for k = kr + 1, . . . , kr+1,

∞∑
k=kr+1+1

|bmrjnrk| < γ,

kr∑
k=1

|bmrjnrk| < γ,

kr+1∑
k=kr+1

|<(bmrjnrk)| > 3γ

for all r, i, j ∈ N . We putxk := 0 for k ≤ k1 andxk := (−1)rsgn<(bmrjnrk) for
kr < k ≤ kr+1 (r ∈ N). Thenx ∈ m and for allr, i, j ∈ N we get

<
(
[Bx]mrjnr − [Bx]mr+1,inr+1

)
=

∣∣∣∑
k

<(bmrjnrkxk)−
∑

k

<(bmr+1,inr+1kxk)
∣∣∣

≥
kr+1∑

k=kr+1

|<(bmrjnrk)|+
kr+2∑

k=kr+1+1

|<(bmr+1,inr+1k)| −
kr∑

k=1

|bmrjnrk|

−
kr+1∑
k=1

|bmr+1,inr+1k| −
∞∑

k=kr+1+1

|bmrjnrk| −
∞∑

k=kr+2+1

|bmr+1,inr+1k|

> 3γ + 3γ − 4γ = 2γ.

Hence, by Remark 3.2,x 6∈ CeB. H
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Proof of Theorem 3.1.
Necessity.(i) and (ii) are evident.
(iii) By Lemma 2.2 there existsN ∈ N such thatB(m) ⊂ CN

e . Applying
Lemma 3.3 to the matrix(bm,n+N,k), we getlimn lims limm

∑∞
k=s |bmnk| = 0.

Hence there exists an index sequence(Ln) such that

sup
n≥N

lim
s

lim
m

∞∑
k=Ln+1

|bmnk| < ∞.

By Theorem 2.3 (v)supn≥N limm
∑Ln

k=1 |bmnk| < ∞. Hence (iii) follows.
(iv) By (i) and (iii) we get(bk) ∈ `. We may assume thatbk = 0 (k ∈ N). So

(iv) follows by Lemma 3.4.
Sufficiency. From (i) and (iii) it follows that the series

∑
k |bkxk|

converges for everyx ∈ m. Let γmn :=
∑

k |bmnk − bk| (m, n ∈ N). By (iv)
limn limm|γmn| = 0. For everyx ∈ m we get∣∣∣∑

k

bmnkxk −
∑

k

bkxk

∣∣∣ ≤ γmn‖x‖∞ (m,n ∈ N).

HenceCe-limm,n
∑

k bmnkxk =
∑

k bkxk. Som ⊂ CeB. H

Theorem 3.5.A 3-dimensional matrixB = (bmnk) mapsm into Cbe if and only if
B satisfies(iv) of Theorem3.1and

(i’) for everyk ∈ N the limit bk := Cbe-limm,n bmnk exists,
(ii’) supn limm

∑
k |bmnk| < ∞.

Under these circumstances,(bk) ∈ ` and

limB x =
∑

k bkxk (x ∈ m).

Proof. It may be obtained in the same way as the proof of Theorem 3.1.H
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KOONDUVUST SÄILITAVAD JA TEKITAVAD SM-MENETLUSED

Maria ZELTSER

On vaadeldud topeltjadade ruumi

Ce := {x = (xkl)|∃a ∈ K : lim
l→∞

lim
k→∞

|xkl − a| = 0}.

Libiseva küüru meetodi abil on leitud tarvilikud ja piisavad tingimused selleks,
et kolmemõõtmeline maatriks (ehk SM-menetlus) teisendaks iga koonduva või
tõkestatud jada(xk) ruumiCe või tema alamruumi

Cbe :=
{
x∈Ce| ∀l∈N : (xkl)k∈ m

}
.
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