Generalization of superconnection in noncommutative geometry

Viktor Abramov
Institute of Pure Mathematics, University of Tartu, J. Liivi 2, 51004 Tartu, Estonia; viktor.abramov@ut.ee

Received 21 November 2005, in revised form 22 December 2005

Abstract

We propose the notion of a \mathbb{Z}_{N}-connection, where $N \geq 2$, which can be viewed as a generalization of the notion of a \mathbb{Z}_{2}-connection or superconnection. We use the algebraic approach to the theory of connections to give the definition of a \mathbb{Z}_{N}-connection and to explore its structure. It is well known that one of the basic structures of the algebraic approach to the theory of connections is a graded differential algebra with differential d satisfying $d^{2}=0$. In order to construct a \mathbb{Z}_{N}-generalization of a superconnection for any $N>2$, we make use of a \mathbb{Z}_{N}-graded q-differential algebra, where q is a primitive N th root of unity, with N-differential d satisfying $d^{N}=0$. The concept of a graded q-differential algebra arises naturally within the framework of noncommutative geometry and the use of this algebra in our construction involves the appearance of q-deformed structures such as graded q-commutator, graded q-Leibniz rule, and q-binomial coefficients. Particularly, if $N=2, q=-1$, then the notion of a \mathbb{Z}_{N}-connection coincides with the notion of a superconnection. We define the curvature of a \mathbb{Z}_{N}-connection and prove that it satisfies the Bianchi identity.

Key words: superconnection, covariant derivative, graded differential algebra, graded q-differential algebra.

1. INTRODUCTION

The concept of a superconnection was proposed by Mathai and Quillen [${ }^{1}$] (see also $\left[^{2}\right]$) in the 1980 s to represent the Thom class of a vector bundle by a differential form having a Gaussian shape. Later, Atiyah and Jeffrey [${ }^{3}$] proposed the geometric approach to a topological quantum field theory on a four-dimensional manifold [${ }^{4}$] based on the superconnection formalism. Assuming that a vector bundle $\pi: E \rightarrow M$ has a \mathbb{Z}_{2}-graded structure, i.e. it is a superbundle, the total grading of an E-valued differential form can be defined as the sum of two
gradings, one of which comes from the \mathbb{Z}_{2}-graded structure of the algebra of differential forms on a base manifold M and the other from a \mathbb{Z}_{2}-graded structure of a superbundle E. A superconnection is a linear mapping of odd degree with respect to this total grading, behaving like a graded differentiation with respect to the multiplication by differential forms. Consequently, if we wish to generalize the notion of a superconnection to any integer $N>2$, we must have a \mathbb{Z}_{N}-graded analogue of an algebra of differential forms, and assuming that a vector bundle has also a \mathbb{Z}_{N}-graded structure, we can elaborate a generalization of a superconnection following the scheme proposed by Mathai and Quillen. In the present paper we introduce the notion of a \mathbb{Z}_{N}-connection, where N is any integer satisfying $N \geq 2$, within the framework of an algebraic approach to the theory of connections. The first component of our construction is a \mathbb{Z}_{N}-graded q-differential algebra [${ }^{5-8}$], where q is a primitive N th root of unity, denoted by \mathcal{B}. This algebra plays the role of an analogue of an algebra of differential forms. It should be mentioned that a differential d of \mathcal{B} satisfies $d^{N}=0$. The second component is a \mathbb{Z}_{N}-graded left module \mathcal{E} over the subalgebra $\mathcal{A} \subset \mathcal{B}$ of the elements of grading zero of \mathcal{B}. From a geometric point of view, a module \mathcal{E} can be considered as an analogue of the space of sections of a \mathbb{Z}_{N}-graded vector bundle. Taking the tensor product $\mathcal{E}_{\mathcal{B}}=\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$, which can be viewed as an analogue of a space of \mathbb{Z}_{N}-graded vector bundle valued differential forms, and defining the \mathbb{Z}_{N}-graded structure on this product, we give the definition of a \mathbb{Z}_{N}-connection D in the spirit of Mathai and Quillen. We show that the N th power of a \mathbb{Z}_{N}-connection is the grading zero endomorphism of the left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$, and we define the curvature F_{D} of a $\mathbb{Z}_{N}{ }^{-}$ connection by $F_{D}=D^{N}$. It is proved that the curvature of a \mathbb{Z}_{N}-connection satisfies the Bianchi identity.

2. GRADED q-DIFFERENTIAL ALGEBRAS

In this section we describe a generalization of a graded differential algebra, which naturally arises in the framework of q-deformed structures. This generalization is called a graded q-differential algebra, where q is a primitive N th root of unity. We show that given a graded unital associative algebra over \mathbb{C} with element v satisfying $v^{N}=e$, where e is the identity element of this algebra, one can construct the graded q-differential algebra by means of a q-commutator.

Let $\mathcal{B}=\oplus_{k \in \mathbb{Z}} \mathcal{B}^{k}$ be an associative unital \mathbb{Z}-graded algebra over \mathbb{C}. We shall denote the identity element of \mathcal{B} by e and the grading of a homogeneous element $\omega \in \mathcal{B}$ by $|\omega|$, i.e. if $\omega \in \mathcal{B}^{k}$, then $|\omega|=k$. An algebra \mathcal{B} is said to be a graded q-differential algebra ($\left[^{5,6}\right]$), where q is a primitive N th root of unity $(N \geq 2)$, if it is endowed with a linear mapping $d: \mathcal{B}^{k} \rightarrow \mathcal{B}^{k+1}$ of degree 1 satisfying the graded q-Leibniz rule $d\left(\omega \omega^{\prime}\right)=d(\omega) \omega^{\prime}+q^{|\omega|} \omega d\left(\omega^{\prime}\right)$, where $\omega, \omega^{\prime} \in \mathcal{B}$, and $d^{N}(\omega)=0$ for any $\omega \in \mathcal{B}$. A mapping d is called an N-differential of a graded q-differential algebra. It is easy to see that a graded q-differential algebra is a generalization of
the notion of a graded differential algebra, since a graded differential algebra is a particular case of a graded q-differential algebra if $N=2$ and $q=-1$.

From the graded structure of an algebra \mathcal{B} it follows that the subspace $\mathcal{B}^{0} \subset \mathcal{B}$ of elements of grading zero is the subalgebra of an algebra \mathcal{B}. The pair (\mathcal{B}, d) is said to be an N-differential calculus on a unital associative algebra \mathcal{A} if \mathcal{B} is a graded q-differential algebra with N-differential d and $\mathcal{A}=\mathcal{B}^{0}$. For any $k \in \mathbb{Z}$ the subspace \mathcal{B}^{k} of elements of grading k has the structure of a bimodule over the subalgebra \mathcal{B}^{0} and a graded q-differential algebra can be viewed as an N-differential complex ([$\left.{ }^{6}\right]$)

$$
\ldots \xrightarrow{d} \mathcal{B}^{k-1} \xrightarrow{d} \mathcal{B}^{k} \xrightarrow{d} \mathcal{B}^{k+1} \xrightarrow{d} \ldots,
$$

with differential d satisfying the graded q-Leibniz rule. If \mathcal{B} is a \mathbb{Z}-graded q-differential algebra, then we can define the \mathbb{Z}_{N}-graded structure on an algebra \mathcal{B} by putting $\mathcal{B}^{\bar{p}}=\oplus_{i \in \mathbb{Z}} \mathcal{B}^{N i+p}$, where $p=0,1,2, \ldots, N-1$, and \bar{p} is the residue class of an integer p modulo N. Then $\mathcal{B}=\oplus_{p \in \mathbb{Z}_{N}} \mathcal{B}^{p}$. In what follows, if a graded structure of an algebra \mathcal{B} is concerned, we shall always mean the above-described \mathbb{Z}_{N}-graded structure of \mathcal{B}. Since all graded structures considered in this paper are \mathbb{Z}_{N}-graded structures, we always assume that the values of each index related to a graded structure are elements of \mathbb{Z}_{N}. If there is no confusion, we shall denote the values of indices by $0,1,2, \ldots, N-1$ meaning the residue classes modulo N.

Let us now show that if a graded unital associative algebra contains an element v satisfying $v^{N}=e$, where e is the identity element of this algebra, then one equips this algebra with the N-differential satisfying the graded q-Leibniz rule, turning this algebra into a graded q-differential algebra. Let \mathcal{A} be an associative unital \mathbb{Z}_{N}-graded algebra over the complex numbers \mathbb{C} and $\mathcal{A}^{k} \subset \mathcal{A}$ be the subspace of homogeneous elements of a grading k. Given a complex number $q \neq 1$, one defines a q-commutator of two homogeneous elements $w, w^{\prime} \in \mathcal{A}$ by the formula

$$
\left[w, w^{\prime}\right]_{q}=w w^{\prime}-q^{|w|\left|w^{\prime}\right|} w^{\prime} w
$$

Using the associativity of an algebra \mathcal{A} and the property $\left|w w^{\prime}\right|=|w|+\left|w^{\prime}\right|$ of its graded structure, it is easy to show that for any homogeneous elements $w, w^{\prime}, w^{\prime \prime} \in \mathcal{A}$ it holds that

$$
\begin{equation*}
\left[w, w^{\prime} w^{\prime \prime}\right]_{q}=\left[w, w^{\prime}\right]_{q} w^{\prime \prime}+q^{|w|\left|w^{\prime}\right|} w^{\prime}\left[w, w^{\prime \prime}\right]_{q} . \tag{1}
\end{equation*}
$$

Given an element v of grading 1, i.e. $v \in \mathcal{A}^{1}$, one can define the mapping $d_{v}: \mathcal{A}^{k} \rightarrow \mathcal{A}^{k+1}$ by the formula $d_{v} w=[v, w]_{q}, w \in \mathcal{A}^{k}$. It follows from the property of q-commutator (1) that d_{v} is the linear mapping of degree 1 satisfying the graded q-Leibniz rule $d_{v}\left(w w^{\prime}\right)=d_{v}(w) w^{\prime}+q^{|w|} w d_{v}\left(w^{\prime}\right)$, where w, w^{\prime} are homogeneous elements of \mathcal{A}. Let $[k]_{q}=1+q+q^{2}+\ldots+q^{k-1}$ and $[k]_{q}!=[1]_{q}[2]_{q} \ldots[k]_{q}$.

Lemma 1. For any integer $k \geq 2$ the k th power of the mapping d_{v} can be written as follows:

$$
d_{v}^{k} w=\sum_{i=0}^{k} p_{i}^{(k)} v^{k-i} w v^{i}
$$

where w is a homogeneous element of \mathcal{A} and

$$
\begin{gathered}
p_{i}^{(k)}=(-1)^{i} q^{|w|_{i}} \frac{[k]_{q}!}{[i]_{q}![k-i]_{q}!}=(-1)^{i} q^{|w|_{i}}\left[\begin{array}{c}
k \\
i
\end{array}\right]_{q}, \\
|w|_{i}=i|w|+\frac{i(i-1)}{2} .
\end{gathered}
$$

The proof of this lemma is based on the following identities:

$$
\begin{gathered}
p_{0}^{(k)}=p_{0}^{(k+1)}=1, \quad p_{k+1}^{(k+1)}=-q^{|w|+k} p_{k}^{(k)}, \\
p_{i}^{(k+1)}=p_{i}^{(k)}-q^{|w|+k} p_{i-1}^{(k)}, \quad 1 \leq i \leq k .
\end{gathered}
$$

Theorem 1. If N is an integer such that $N \geq 2, q$ is a primitive N th root of unity, \mathcal{A} is a \mathbb{Z}_{N}-graded algebra containing an element v satisfying $v^{N}=e$, where e is the identity element of an algebra \mathcal{A}, then \mathcal{A} equipped with the linear mapping $d_{v}=[v,]_{q}$ is a graded q-differential algebra with N-differential d_{v}, i.e. d_{v} satisfies the graded q-Leibniz rule and $d_{v}^{N} w=0$ for any $w \in \mathcal{A}$.

Proof. It follows from Lemma 1 that if q is a primitive N th root of unity, then for any integer $l=1,2, \ldots, N-1$ the coefficient $p_{l}^{(N)}$ contains the factor $[N]_{q}$ which vanishes in the case of q being a primitive N th root of unity. This implies $p_{l}^{(N)}=0$. Thus $d_{v}^{N}(w)=v^{N} w+(-1)^{N} q^{|w|_{N}} w v^{N}$. Taking into account that $v^{N}=e$, we obtain $d_{v}^{N}(w)=\left(1+(-1)^{N} q^{|w|_{N}}\right) w=\lambda w$. The coefficient $\lambda=1+(-1)^{N} q^{|w|_{N}}$ vanishes if q is a primitive N th root of unity. Indeed, if N is an odd number, then $1-\left(q^{N}\right)^{(N-1) / 2}=0$. In the case of an even integer N we have $1+\left(q^{N / 2}\right)^{N-1}=1+(-1)^{N-1}=0$, and this ends the proof of the theorem.

For applications in differential geometry it is important to have a realization of a graded q-differential algebra as an algebra of analogues of differential forms on a geometric space. The proved theorem allows us to construct a graded q-differential algebra taking as a starting point a generalized Clifford algebra. The structure of a generalized Clifford algebra suggests that we shall get an analogue of an algebra of differential forms with an N-differential on a noncommutative space. Indeed, let us remind that a generalized Clifford algebra $\mathcal{C}_{p, N}$ is a unital associative algebra over \mathbb{C} generated by $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ which are subjected to the relations

$$
\begin{equation*}
\gamma_{i} \gamma_{j}=q^{\operatorname{sg}(j-i)} \gamma_{j} \gamma_{i}, \quad \gamma_{i}^{N}=1, \quad i, j=1,2, \ldots, p, \tag{2}
\end{equation*}
$$

6
where q is a primitive N th root of unity and $\operatorname{sg}(x)$ is the usual sign function. The structure of a graded q-differential algebra in the case of the generalized Clifford algebra with two generators is studied in $\left[{ }^{9}\right]$. In this case the corresponding generalized Clifford algebra $\mathcal{C}_{2, N}$ can be interpreted as an algebra of polynomial functions on a reduced quantum plane. Let us denote by x, y the generators of the algebra in this case. The relations (2) take on the form $x y=q y x, x^{N}=y^{N}=1$. The algebra $\mathcal{C}_{2, N}$ becomes a \mathbb{Z}_{N}-graded algebra if we assign the grading zero to the generator x, the grading 1 to the generator y and define the grading of any monomial made up of generators x, y as the sum of gradings of its factors. The differential d is defined by $d w=[y, w]_{q}, w \in \mathcal{C}_{2, N}$. Since $y^{N}=1$, it follows from Theorem 1 that the algebra $\mathcal{C}_{2, N}$ is a graded q-differential algebra and d is its N-differential. We give this graded q-differential algebra and its N-differential d the following geometric interpretation: the subalgebra of polynomials of grading zero is the algebra of functions on a one-dimensional space with "coordinate" x, and the elements of higher gradings expressed in terms of "coordinate" x and its "differential" $d x$ are the analogues of differential forms with exterior differential d. We have $d x=y \Delta_{q} x=y(x-q x)$. Since $d^{k} \neq 0$ for $k<N$, a differential k-form w may be expressed either by means of $(d x)^{k}$ or by means of $d^{k} x$, where

$$
d^{k} x=\frac{[k]_{q}}{q^{k(k-1) / 2}}(d x)^{k} x^{1-k} .
$$

If $w=(d x)^{k} f(x)$, where $f(x)$ is a polynomial of grading zero, and $d w=$ $(d x)^{k+1} \delta_{x}^{(k)}(f)$, then

$$
\delta_{x}^{(k)}(f)=\left(\Delta_{q} x\right)^{-1}\left(q^{-k} f-q^{k} A(f)\right),
$$

where A is the homomorphism of the algebra of polynomials of grading zero determined by $A(x)=q x$. The higher-order derivatives $\delta_{x}^{(k)}$ have the property

$$
\delta_{x}^{(k)}(f g)=\delta_{x}^{(k)}(f) g+q^{k} A(f) \delta_{x}^{(0)}(g), \quad k=0,1,2, \ldots, N-1,
$$

where $\delta_{x}^{(0)}(g)=\frac{\partial g}{\partial x}=\left(\Delta_{q} x\right)^{-1}(g-A(g))$ is the A-twisted derivative. A higherorder derivative $\delta_{x}^{(k)}$ can be expressed in terms of the derivative $\frac{\partial}{\partial x}$ as follows:

$$
\delta_{x}^{(k)}=q^{k} \frac{\partial}{\partial x}+\frac{q^{-k}-q^{k}}{1-q} x^{-1} .
$$

The realization of a graded q-differential algebra as an algebra of analogues of differential forms on an ordinary (commutative) space is constructed in [${ }^{10}$]. Let $x_{1}, x_{2}, \ldots, x_{n}$ be the coordinates of an n-dimensional space $\mathbb{R}^{n}, C^{\infty}\left(\mathbb{R}^{n}\right)$ be the algebra of smooth \mathbb{C}-valued functions, and $d x_{1}, d x_{2}, \ldots, d x_{n}$ be the differentials of the coordinates. Let $\mathcal{N}=\{1,2, \ldots, n\}$ be the set of integers, I be a subset of \mathcal{N}, and $|I|$ be the number of elements in I. Given any subset I of \mathcal{N}, i.e.
$I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subset \mathcal{N}, 1 \leq i_{1}<i_{2}<\ldots i_{k} \leq n$, we associate to I the formal monomial $d x_{I}$, where $d x_{I}=d x_{i_{1}} d x_{i_{2}} \ldots d x_{i_{n}}$ and $d x_{\emptyset}=1$. Let $\Omega\left(\mathbb{R}^{n}\right)$ be the free left $C^{\infty}\left(\mathbb{R}^{n}\right)$-module generated by all formal monomials $d x_{I}$. It is evident that $\Omega\left(\mathbb{R}^{n}\right)$ has a natural \mathbb{Z}-graded structure $\Omega\left(\mathbb{R}^{n}\right)=\oplus_{k} \Omega^{k}\left(\mathbb{R}^{n}\right)$, where $\Omega^{k}\left(\mathbb{R}^{n}\right)$ is the left $C^{\infty}\left(\mathbb{R}^{n}\right)$-module freely generated by all $d x_{I}$, where I contains k elements. An element of the module $\Omega^{k}\left(\mathbb{R}^{n}\right)$ has the form

$$
\begin{equation*}
\omega=\sum_{I,|I|=k} f_{I} d x_{I}=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n} f_{i_{1} i_{2} \ldots i_{k}} d x_{i_{1}} d x_{i_{2}} \ldots d x_{i_{k}}, \tag{3}
\end{equation*}
$$

where $f_{I}=f_{i_{1} i_{2} \ldots i_{k}} \in C^{\infty}\left(\mathbb{R}^{n}\right)$. Let us define the degree 1 linear operator $d: \Omega^{k}\left(\mathbb{R}^{n}\right) \rightarrow \Omega^{k+1}\left(\mathbb{R}^{n}\right)$ by the formula

$$
\begin{equation*}
d \omega=\sum_{J,|J|=k+1} g_{J} d x_{J}, g_{j_{1} j_{2} \ldots j_{k+1}}=\sum_{m=1}^{k+1} q^{m-1} \frac{\partial f_{j_{1} j_{2} \ldots \hat{j}_{m} \ldots j_{k+1}}}{\partial x_{j_{m}}} \tag{4}
\end{equation*}
$$

where ω has the form (3) and $J=\left\{j_{1}, j_{2}, \ldots, j_{k+1}\right\}$. It can be shown that $d^{N} \omega=0$ for any $\omega \in \Omega\left(\mathbb{R}^{n}\right)$. Thus we have the N-differential complex

$$
\begin{equation*}
\ldots \stackrel{d}{\rightarrow} \Omega^{k-1}\left(\mathbb{R}^{n}\right) \xrightarrow{d} \Omega^{k}\left(\mathbb{R}^{n}\right) \xrightarrow{d} \Omega^{k+1}\left(\mathbb{R}^{n}\right) \xrightarrow{d} \ldots \tag{5}
\end{equation*}
$$

We shall call (5) an N-differential de Rham complex. In order to define the structure of an algebra on the N-differential de Rham complex (5), we introduce the following notations: if I, J are two subsets of \mathcal{N} satisfying $I \cap J=\emptyset$, then we denote by $b(I, J)(a(I, J))$ the number of pairs $(i, j) \in I \times J$ such that $i>j(i<j)$, and $c(I, J)=b(I, J)-a(I, J)$. It is easy to check that for any subsets I, J we have $b(I, J)=a(J, I), a(I, J)+b(I, J)=|I||J|$ and $c(I, J)=-c(J, I)$. Let us define the multiplication on the left $C^{\infty}\left(\mathbb{R}^{n}\right)$-module $\Omega\left(\mathbb{R}^{n}\right)$ by the following rules:

$$
f d x_{I}=d x_{I} f, \quad d x_{I} d x_{J}= \begin{cases}0 & \text { if } I \cap J \neq \emptyset, \tag{6}\\ q^{b(I, J)} d x_{I \cup J} & \text { if } I \cap J=\emptyset .\end{cases}
$$

The left module $\Omega\left(\mathbb{R}^{n}\right)$ with the product defined by the rules (6) is a graded associative algebra, and it can be shown that the N-differential d defined by (4) satisfies the graded q-Leibniz rule with respect to this product, which implies that $\Omega\left(\mathbb{R}^{n}\right)$ is a graded q-differential algebra with N-differential d. We shall call an element of this algebra a differential form and d the N-exterior differential. It is evident that taking $q=-1$ in (4), (6), we get the classical algebra of differential forms with exterior differential d satisfying $d^{2}=0$. It follows from (6) that $d x_{I} d x_{J}=q^{c(I, J)} d x_{J} d x_{I}=q^{|I||J|-2 a(I, J)} d x_{J} d x_{I}$, and in the special case of $q=-1$ this commutation relation depends only on the gradings $|I|,|J|$. This leads to the supercommutativity of the algebra of differential forms in the classical case.

3. \mathbb{Z}_{N}-CONNECTION AND ITS CURVATURE

In this section we give the definition of a \mathbb{Z}_{N}-connection, the curvature of a \mathbb{Z}_{N}-connection, and prove the Bianchi identity. We also study the structure of a \mathbb{Z}_{N}-connection and show that a superconnection is a particular case of a \mathbb{Z}_{N}-connection for $N=2$.

Let \mathcal{A} be a unital associative \mathbb{C}-algebra, (\mathcal{B}, d) be an N-differential calculus
 the structure of \mathbb{Z}_{N}-graded \mathbb{C}-vector space induced by a left \mathcal{A}-module structure if one defines $\alpha \xi=(\alpha e) \xi$, where $\alpha \in \mathbb{C}, \xi \in \mathcal{E}, e$ is the identity element of \mathcal{A}. Let $\mathcal{E}_{\mathcal{B}}=\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$ be the tensor product $\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$ of the right \mathcal{A}-module \mathcal{B} and the left \mathcal{A}-module \mathcal{E}. A graded q-differential algebra \mathcal{B} can be viewed as a $(\mathcal{B}, \mathcal{B})$-bimodule, which implies that the tensor product $\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$ has the structure of the left \mathcal{B}-module. Since an algebra \mathcal{B} can also be viewed as an $(\mathcal{A}, \mathcal{A})$-bimodule, the tensor product $\mathcal{E}_{\mathcal{B}}=\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$ has also the left \mathcal{A}-module structure. It should be mentioned that $\mathcal{E}_{\mathcal{B}}$ has also the structure of \mathbb{C}-vector space which is the tensor product of \mathbb{C}-vector space structures of \mathcal{B} and \mathcal{E}.

Each factor in the tensor product $\mathcal{E}_{\mathcal{B}}=\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$ has the \mathbb{Z}_{N}-graded structure. Using these \mathbb{Z}_{N}-graded structures, one can construct a \mathbb{Z}_{N}-graded structure on the tensor product $\mathcal{E}_{\mathcal{B}}$ as follows: given two homogeneous elements $\omega \in \mathcal{B}, \xi \in \mathcal{E}$, one defines the total grading of the element $\omega \otimes_{\mathcal{A}} \xi \in \mathcal{E}_{\mathcal{B}}$ by $\left|\omega \otimes_{\mathcal{A}} \xi\right|=|\omega|+|\xi|$. Then

$$
\mathcal{E}_{\mathcal{B}}=\oplus_{k \in \mathbb{Z}_{N}} \mathcal{E}_{\mathcal{B}}^{k}, \quad \mathcal{E}_{\mathcal{B}}^{k}=\oplus_{m+l=k} \mathcal{E}_{\mathcal{B}}^{m, l}=\oplus_{m+l=k} \mathcal{B}^{m} \otimes_{\mathcal{A}} \mathcal{E}^{l},
$$

where $k, l, m \in \mathbb{Z}_{N}$. If we consider the tensor product $\mathcal{E}_{\mathcal{B}}$ as the left \mathcal{B}-module, then multiplication by a homogeneous element $\omega \in \mathcal{B}$ of grading k maps an element $\xi \in \mathcal{E}_{\mathcal{B}}^{m, l}$ into the element $\omega \xi \in \mathcal{E}_{\mathcal{B}}^{m+k, l}$, i.e. $\mathcal{E}_{\mathcal{B}}^{n} \xrightarrow{\omega} \mathcal{E}_{\mathcal{B}}^{n+k}$. If we consider the tensor product $\mathcal{E}_{\mathcal{B}}$ as the left \mathcal{A}-module, then multiplication by any element $u \in \mathcal{A}$ preserves the \mathbb{Z}_{N}-graded structure of $\mathcal{E}_{\mathcal{B}}$. Consequently, if $m+l=k$, then $\mathcal{E}_{\mathcal{B}}^{m, l}$ is the left \mathcal{A}-submodule of a left \mathcal{A}-module $\mathcal{E}_{\mathcal{B}}^{k}$. Let us denote

$$
\Gamma_{\mathcal{B}}(\mathcal{E})=\oplus_{l} \mathcal{E}_{\mathcal{B}}^{0, l}, \quad \Omega_{\mathcal{B}}^{k}(\mathcal{E})=\oplus_{l} \mathcal{E}_{\mathcal{B}}^{k, l}, \quad k \geq 1 .
$$

The \mathbb{Z}_{N}-graded left \mathcal{A}-module $\Gamma_{\mathcal{B}}(\mathcal{E})$ is isomorphic to a left \mathcal{A}-module \mathcal{E}. The corresponding isomorphism $\varrho: \mathcal{E} \rightarrow \Gamma_{\mathcal{B}}(\mathcal{E})$ is defined for any $\xi \in \mathcal{E}$ by $\varrho(\xi)=$ $e \otimes_{\mathcal{A}} \xi \in \Gamma_{\mathcal{B}}(\mathcal{E})$, where e is the identity element of \mathcal{A}. It is worth mentioning that the isomorphism ϱ preserves the graded structures of the \mathcal{A}-modules \mathcal{E} and $\Gamma_{\mathcal{B}}(\mathcal{E})$, i.e. $\varrho: \mathcal{E}^{k} \rightarrow \mathcal{E}_{\mathcal{B}}^{0, k}$.

Let $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$ be the space of endomorphisms of the vector space $\mathcal{E}_{\mathcal{B}}$, $\operatorname{End}_{\mathcal{A}}\left(\mathcal{E}_{\mathcal{B}}\right)$ be the space of endomorphisms of the left \mathcal{A}-module $\mathcal{E}_{\mathcal{B}}$, and $\operatorname{End}_{\mathcal{B}}\left(\mathcal{E}_{\mathcal{B}}\right)$ be the space of endomorphisms of the left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$. Obviously, End $\mathcal{B}_{\mathcal{B}}\left(\mathcal{E}_{\mathcal{B}}\right) \subset$ $\operatorname{End}_{\mathcal{A}}\left(\mathcal{E}_{\mathcal{B}}\right) \subset \operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$. The space $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$ is a \mathbb{Z}_{N}-graded unital associative algebra if one takes the product $A \circ B$ of two endomorphisms of the space $\mathcal{E}_{\mathcal{B}}$
as an algebra multiplication. The \mathbb{Z}_{N}-graded structure of this algebra as well as the \mathbb{Z}_{N}-graded structures of the spaces $\operatorname{End}_{\mathcal{A}}\left(\mathcal{E}_{\mathcal{B}}\right), \operatorname{End}_{\mathcal{B}}\left(\mathcal{E}_{\mathcal{B}}\right)$ are induced by the total \mathbb{Z}_{N}-graded structure of $\mathcal{E}_{\mathcal{B}}$. Thus we have the decomposition $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)=$ $\oplus_{k} \operatorname{End}_{\mathbb{C}}^{k}\left(\mathcal{E}_{\mathcal{B}}\right)$, where $\operatorname{End}_{\mathbb{C}}^{k}\left(\mathcal{E}_{\mathcal{B}}\right)$ is the space of homogeneous endomorphisms of grading k of the space $\mathcal{E}_{\mathcal{B}}$, and the similar decompositions for the spaces End $\mathcal{A}_{\mathcal{A}}\left(\mathcal{E}_{\mathcal{B}}\right)$, $\operatorname{End}_{\mathcal{B}}\left(\mathcal{E}_{\mathcal{B}}\right)$. The structure of a graded associative algebra of $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$ allows us to use the q-commutator $[A, B]_{q}=A \circ B-q^{|A||B|} B \circ A$, where $A, B \in \operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$, and $|A|,|B|$ are the corresponding gradings.

Definition 1. $A \mathbb{Z}_{N}$-graded \mathcal{B}-connection on the \mathbb{Z}_{N}-graded left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$ is an endomorphism D of degree 1 of the vector space $\mathcal{E}_{\mathcal{B}}$ satisfying the condition

$$
\begin{equation*}
D(\omega \xi)=d(\omega) \xi+q^{|\omega|} \omega D(\xi) \tag{7}
\end{equation*}
$$

where $\omega \in \mathcal{B}, \xi \in \mathcal{E}_{\mathcal{B}}$, and d is the N-differential of a \mathbb{Z}_{N}-graded q-differential algebra \mathcal{B}.

Since we use the same graded q-differential algebra \mathcal{B} in many of our constructions, and in order to simplify the terminology, we shall call D a $\mathbb{Z}_{N^{-}}$ connection on the module $\mathcal{E}_{\mathcal{B}}$. Hence, a \mathbb{Z}_{N}-connection D can be viewed as an element of grading 1 of the \mathbb{Z}_{N}-graded algebra $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$, i.e. $D \in \operatorname{End}_{\mathbb{C}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right)$, and the behaviour of this element with respect to the structure of the left \mathcal{B}-module of $\mathcal{E}_{\mathcal{B}}$ is fixed by the condition (7).

We can extend a \mathbb{Z}_{N}-connection D to act on the \mathbb{Z}_{N}-graded algebra $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$ in a way consistent with the graded q-Leibniz rule if we put

$$
D(A)=[D, A]_{q}=D \circ A-q^{|A|} A \circ D, \quad A \in \operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right) .
$$

It is evident that $D: \operatorname{End}_{\mathbb{C}}^{k}\left(\mathcal{E}_{\mathcal{B}}\right) \rightarrow \operatorname{End}_{\mathbb{C}}^{k+1}\left(\mathcal{E}_{\mathcal{B}}\right)$ and

$$
D(A B)=D(A) \circ B+q^{|A|} A \circ D(B) .
$$

Proposition 1. For any homogeneous endomorphism A of the left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$, homogeneous element ω of the algebra \mathcal{B}, and $\xi \in \mathcal{E}_{\mathcal{B}}$ it holds that

$$
D(A)(\omega \xi)=\left(1-q^{|A|}\right) d \omega A(\xi)+q^{|\omega|} \omega D(A)(\xi) .
$$

It follows from Proposition 1 that if A is a grading zero endomorphism of the left \mathcal{A}-module $\mathcal{E}_{\mathcal{B}}$, i.e. $A \in \operatorname{End}_{\mathcal{A}}^{0}\left(\mathcal{E}_{\mathcal{B}}\right)$, then $D(A)(u \xi)=u D(A)(\xi)$ for any $u \in \mathcal{A}$ and $\xi \in \mathcal{E}_{\mathcal{B}}$. Consequently, $D(A) \in \operatorname{End}_{\mathcal{A}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right)$. Particularly, if $A \in \operatorname{End}_{\mathcal{B}}^{0}\left(\mathcal{E}_{\mathcal{B}}\right)$, then $D(A) \in \operatorname{End}_{\mathcal{A}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right)$.

Proposition 2. For any \mathbb{Z}_{N}-connection D the N th power of an endomorphism $D \in \operatorname{End}_{\mathbb{C}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right)$ is the grading zero endomorphism of the left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$, i.e. $D^{N} \in \operatorname{End}_{\mathcal{B}}^{0}\left(\mathcal{E}_{\mathcal{B}}\right)$.

Proof. It suffices to show that for any homogeneous $\omega \in \mathcal{B}$ an endomorphism $D \in \operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$ satisfies $D^{N}(\omega \xi)=\omega D^{N}(\xi)$, where $\xi \in \mathcal{E}_{\mathcal{B}}$. We can expand the k th power of an endomorphism D as follows:

$$
D^{k}(\omega \xi)=\sum_{m=0}^{k} q^{m|\omega|}\left[\begin{array}{c}
k \tag{8}\\
m
\end{array}\right]_{q} d^{k-m}(\omega) D^{m}(\xi) .
$$

Since d is the N-differential of an algebra \mathcal{B} which implies $d^{N} \omega=0$, and $\left[\begin{array}{l}N \\ m\end{array}\right]_{q}=0$ for q being a primitive N th root of unity, where $1 \leq m \leq N-1$, the expansion (8) takes on the form

$$
D^{N}(\omega \xi)=q^{N|\omega|} \omega D^{N}(\xi)=\omega D^{N}(\xi) .
$$

Definition 2. The curvature F_{D} of a \mathbb{Z}_{N}-connection D is the endomorphism D^{N} of grading zero of the left \mathbb{Z}_{N}-graded \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$, i.e. $F_{D}=D^{N} \in \operatorname{End}_{\mathcal{B}}^{0}\left(\mathcal{E}_{\mathcal{B}}\right)$.

Proposition 3. For any \mathbb{Z}_{N}-connection D the curvature F_{D} of this connection satisfies the Bianchi identity $D\left(F_{D}\right)=0$.
Proof. We have $D\left(F_{D}\right)=\left[D, F_{D}\right]_{q}=D \circ F_{D}-F_{D} \circ D=D^{N+1}-D^{N+1}=0$.
In order to understand better the structure of a \mathbb{Z}_{N}-connection, we shall need a notion of a covariant derivative. Let $(\mathfrak{M}, \mathfrak{d})$ be a differential calculus over an algebra \mathfrak{A}, i.e. \mathfrak{M} is a \mathfrak{A}-bimodule and $\mathfrak{d}: \mathfrak{A} \rightarrow \mathfrak{M}$ is a linear mapping satisfying the Leibniz rule $\mathfrak{d}(\mathfrak{a b})=\mathfrak{d}(\mathfrak{a}) \mathfrak{b}+\mathfrak{a} \mathfrak{d}(\mathfrak{b})$ for any $\mathfrak{a}, \mathfrak{b} \in \mathfrak{A}$. Let \mathfrak{F} be a left \mathfrak{A}-module. A linear mapping $\nabla: \mathfrak{F} \rightarrow \mathfrak{M} \otimes_{\mathfrak{A}} \mathfrak{F}$ is said to be a covariant derivative on \mathfrak{F} with respect to a differential calculus $(\mathfrak{M}, \mathfrak{d})$ if it satisfies

$$
\begin{equation*}
\nabla(\mathfrak{a f})=\mathfrak{d}(\mathfrak{a}) \otimes_{\mathfrak{A}} \mathfrak{f}+\mathfrak{a} \nabla(\mathfrak{f}), \tag{9}
\end{equation*}
$$

for any $\mathfrak{a} \in \mathfrak{A}, \mathfrak{f} \in \mathfrak{F}$.
Let us show that a \mathbb{Z}_{N}-connection D induces the covariant derivative. According to the definition of a \mathbb{Z}_{N}-connection, we have $D: \mathcal{E}_{\mathcal{B}}^{k} \rightarrow \mathcal{E}_{\mathcal{B}}^{k+1}$. The left \mathcal{A}-modules $\mathcal{E}_{\mathcal{B}}^{k}, \mathcal{E}_{\mathcal{B}}^{k+1}$ split into the direct sums

$$
\begin{aligned}
\mathcal{E}_{\mathcal{B}}^{k} & =\oplus_{m+l=k} \mathcal{E}_{\mathcal{B}}^{m, l}=\mathcal{E}_{\mathcal{B}}^{0, k} \oplus \mathcal{E}_{\mathcal{B}}^{1, k-1} \oplus \mathcal{E}_{\mathcal{B}}^{2, k-2} \oplus \ldots \oplus \mathcal{E}_{\mathcal{B}}^{N-1, k+1}, \\
\mathcal{E}_{\mathcal{B}}^{k+1} & =\oplus_{m+l=k+1} \mathcal{E}_{\mathcal{B}}^{m, l}=\mathcal{E}_{\mathcal{B}}^{0, k+1} \oplus \mathcal{E}_{\mathcal{B}}^{1, k} \oplus \mathcal{E}^{2, k-1} \oplus \ldots \oplus \mathcal{E}_{\mathcal{B}}^{N-1, k+2}
\end{aligned}
$$

Let $p_{i, j}: \mathcal{E}_{\mathcal{B}} \rightarrow \mathcal{E}_{\mathcal{B}}^{i, j}, p_{i}: \mathcal{E}_{\mathcal{B}} \rightarrow \Omega_{\mathcal{B}}^{i}(\mathcal{E}), \pi_{k}: \mathcal{B} \rightarrow \mathcal{B}^{k}, \rho_{l}: \mathcal{E} \rightarrow \mathcal{E}^{l}$ be the projections of the left \mathcal{A}-modules onto their \mathcal{A}-submodules. It is evident that each projection is the homomorphism of the corresponding left \mathcal{A}-modules, $p_{k, l}=\pi_{k} \otimes_{\mathcal{A}} \rho_{l}$ and

$$
p_{k}=\sum_{l} p_{k, l}, \quad p_{k, l}\left(\omega \otimes_{\mathcal{A}} \xi\right)=\pi_{k}(\omega) \otimes_{\mathcal{A}} \rho_{l}(\xi), \quad \forall \omega \in \mathcal{B}, \xi \in \mathcal{E}
$$

The pair $\left(\mathcal{B}^{1}, d\right)$ is the differential calculus over an algebra \mathcal{A} and \mathcal{E} is a left \mathcal{A} module. Let us consider the linear mapping $\nabla_{D}: \mathcal{E} \rightarrow \Omega_{\mathcal{B}}^{1}(\mathcal{E})$ defined by the formula $\nabla_{D}=p_{1} \circ D \circ \varrho$.

Proposition 4. The linear mapping ∇_{D} is the covariant derivative on a left \mathcal{A} module \mathcal{E} with respect to the differential calculus $\left(\mathcal{B}^{1}, d\right)$. The covariant derivative ∇_{D} preserves the \mathbb{Z}_{N}-graded structures of the left \mathcal{A}-modules \mathcal{E} and $\Omega_{\mathcal{B}}^{1}(\mathcal{E})$, i.e. $\nabla_{D}: \mathcal{E}^{k} \rightarrow \mathcal{E}_{\mathcal{B}}^{1, k}$.

Proof. In order to show that ∇_{D} is the covariant derivative on a left \mathcal{A}-module \mathcal{E}, we check the covariant derivative condition (9). For any $u \in \mathcal{A}, \xi \in \mathcal{E}$ we have

$$
\begin{aligned}
\nabla_{D}(u \xi) & =p_{1}(D(\varrho(u \xi)))=p_{1}(D(u \varrho(\xi)))=p_{1}(d u \varrho(\xi)+u D \varrho(\xi)) \\
& =p_{1}\left(d u\left(e \otimes_{\mathcal{A}} \xi\right)\right)+u p_{1}(D \varrho(\xi))=p_{1}\left(d u \otimes_{\mathcal{A}} \xi\right)+u \nabla_{D}(\xi) \\
& =\sum_{l} p_{1, l}\left(d u \otimes_{\mathcal{A}} \xi\right)+u \nabla_{D}(\xi)=\pi_{1}(d u) \otimes_{\mathcal{A}} \sum_{l} \rho_{l}(\xi)+u \nabla_{D}(\xi) \\
& =d u \otimes_{\mathcal{A}} \xi+u \nabla_{D}(\xi) .
\end{aligned}
$$

The algebraic approach to a \mathbb{Z}_{N}-connection described in this section has a geometric realization on a vector bundle in the case of $N=2, q=-1$ leading to the known notion of a superconnection. Let us consider a superbundle $E=$ $E^{+} \oplus E^{-}$over a smooth n-dimensional manifold M^{n}. In this case let \mathcal{B} be the algebra of differential forms on a manifold M^{n} and d be the exterior differential of this algebra. It is evident that \mathcal{B} is a \mathbb{Z}_{2}-graded algebra, where the grading of a homogeneous differential form is equal to its degree modulo 2 . The exterior differential satisfies $d^{2}=0$ and we see that the algebra of differential forms on a finite-dimensional manifold is a special case of a graded q-differential algebra for $N=2$ and $q=-1$. Let $\mathcal{B}^{0}=\mathcal{A}$ be the algebra of smooth functions on a manifold M^{n}, and $\mathcal{E}=\mathcal{E}^{+} \oplus \mathcal{E}^{-}$be the left \mathbb{Z}_{2}-graded \mathcal{A}-module of smooth sections of a superbundle E. Then the tensor product $\mathcal{B} \otimes_{\mathcal{A}} \mathcal{E}$ is the space of smooth differential forms on a manifold M^{n} with values in a superbundle E. The total grading of a homogeneous differential form with values in E is the sum of two gradings, where the first is determined by the graded structure of the algebra of differential forms and the second is determined by the graded structure of a superbundle E. The space $\operatorname{End}_{\mathbb{C}}\left(\mathcal{E}_{\mathcal{B}}\right)$ is the space of differential forms on a manifold M with the values in the superbundle $\operatorname{Hom}(E, E)$. The q-commutator becomes the supercommutator if we take $q=-1$. Finally, the definition of a \mathbb{Z}_{N}-connection coincides in this special case with the definition of a superconnection as it is given in $\left[{ }^{2}\right]$.

Let us construct an example of a \mathbb{Z}_{N}-connection. One can extend the N-differential of an algebra \mathcal{B} to act on the \mathbb{Z}_{N}-graded left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$ in a way consistent with the graded q-Leibniz rule by putting $d\left(\omega \otimes_{\mathcal{A}} \xi\right)=d(\omega) \otimes_{\mathcal{A}} \xi$, where $\omega \in \mathcal{B}, \xi \in \mathcal{E}$. It is evident that $d \in \operatorname{End}_{\mathbb{C}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right)$. Let L be an endomorphism of grading 1 of a left \mathcal{A}-module \mathcal{E}, i.e. $L \in \operatorname{End}_{\mathcal{A}}^{1}(\mathcal{E})$. This endomorphism can be extended to the \mathcal{B}-endomorphism of the left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$ in a way consistent with
the $\mathbb{Z}_{N^{-}}$graded structure of $\mathcal{E}_{\mathcal{B}}$ by means of $L\left(\omega \otimes_{\mathcal{A}} \xi\right)=q^{|\omega|} \omega \otimes_{\mathcal{A}} L(\xi)$. Indeed, if $\zeta=\omega \otimes_{\mathcal{A}} \xi \in \mathcal{E}_{\mathcal{B}}$, then

$$
\begin{aligned}
L(\theta \zeta) & =L\left(\theta\left(\omega \otimes_{\mathcal{A}} \xi\right)\right)=L\left((\theta \omega) \otimes_{\mathcal{A}} \xi\right)=q^{|\theta|+|\omega|}(\theta \omega) \otimes_{\mathcal{A}} L(\xi) \\
& =q^{|\theta|} \theta\left(q^{|\omega|} \omega \otimes_{\mathcal{A}} L(\xi)\right)=q^{|\theta|} \theta L(\zeta) .
\end{aligned}
$$

Obviously, $L \in \operatorname{End}_{\mathcal{B}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right) \subset \operatorname{End}_{\mathbb{C}}^{1}\left(\mathcal{E}_{\mathcal{B}}\right)$. The endomorphism $D=d+L$ of grading 1 of the vector space $\mathcal{E}_{\mathcal{B}}$ is a \mathbb{Z}_{N}-connection. Indeed, for any $\omega \in \mathcal{B}, \zeta \in \mathcal{E}_{\mathcal{B}}$ we have

$$
\begin{aligned}
D(\omega \zeta) & =(d+L)(\omega \zeta)=d(\omega \zeta)+L(\omega \zeta) \\
& =d(\omega) \zeta+q^{|\omega|} \omega d(\zeta)+q^{|\omega|} \omega L(\zeta) \\
& =d(\omega) \zeta+q^{|\omega|} \omega D(\zeta) .
\end{aligned}
$$

If A is an endomorphism of a left \mathcal{A}-module \mathcal{E}, then we can decompose it into the homogeneous parts $A_{i j}, i, j \in \mathbb{Z}_{N}$ with respect to the \mathbb{Z}_{N}-grading of \mathcal{E}, where $A_{i j}: \mathcal{E}^{j} \rightarrow \mathcal{E}^{i}$. Then, for any element $\xi=\xi_{0}+\xi_{1}+\ldots+\xi_{N-1} \in \mathcal{E}$ we have $A(\xi)_{i}=\sum_{j \in \mathbb{Z}_{N}} A_{i j}\left(\xi_{j}\right)$, where $A(\xi)_{i}$ is the component of grading $i \in \mathbb{Z}_{N}$ of the element $A(\xi)$. We can extend the action of homogeneous parts $A_{i j}$ to the \mathbb{Z}_{N}-graded left \mathcal{B}-module $\mathcal{E}_{\mathcal{B}}$. If we associate the $N \times N$-matrix $\left(A_{i j}\right), i, j \in \mathbb{Z}_{N}$ to an endomorphism A, where the entries of the matrix are the homogeneous parts of A, then in the case of L we get

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & L_{0, N-1} \tag{10}\\
L_{1,0} & 0 & 0 & \ldots & 0 & 0 \\
0 & L_{2,1} & 0 & \ldots & 0 & 0 \\
0 & 0 & L_{3,2} & \ldots & 0 & 0 \\
& & & \ldots & & \\
0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & L_{N-1, N-2} & 0
\end{array}\right) .
$$

Let us denote by $\left\{d^{m}, L_{1} L_{2} \ldots L_{k}\right\}$, where m, k are non-negative integers, the sum of all possible products made up of the mappings $d, L_{1}, L_{2}, \ldots, L_{k}$, where each product contains m-times the differential d and k mappings $L_{1}, L_{2}, \ldots, L_{k}$ succeeding in the same order. For instance, for $k=0$ we have $\left\{d^{m}, L_{1} L_{2} \ldots L_{k}\right\}=d^{m}$, and for $m=2, k=1$ we have $\left\{d^{2}, L\right\}=d^{2} L+$ $d L d+L d^{2}$. The curvature of the \mathbb{Z}_{N}-connection $D=d+L$ can be written as follows:

$$
F_{D}=D^{N}=\sum_{m+k=N}\left\{d^{m}, L^{k}\right\} .
$$

Using the matrix associated to L, we obtain the $N \times N$-matrix corresponding to the curvature F_{D}, where the entry $F_{D, i j}$ of this matrix can be written as follows:

$$
\begin{equation*}
F_{D, i j}=\sum_{m+k=N, i, j \in \mathbb{Z}_{N}}\left\{d^{m}, L_{i, i-1} L_{i-1, i-2} \ldots L_{j+1, j}\right\} \tag{11}
\end{equation*}
$$

where m, k are non-negative integers running $m, k=0,1, \ldots, N$, and each product in $\left\{d^{m}, L_{i, i-1} L_{i-1, i-2} \ldots L_{j+1, j}\right\}$ contains k entries of the matrix associated to L, which means that $i-j=k$. For instance, if $N=2$, then from (10) and (11) we obtain the matrix of a superconnection $D=d+L$ and the matrix of its curvature, which can be written in the standard notations of supergeometry $\mathcal{E}_{\overline{0}}=\mathcal{E}^{+}, \mathcal{E}_{\overline{1}}=\mathcal{E}^{-}, L^{+}=L_{\overline{0} \overline{1}}, L^{-}=L_{\overline{1} \overline{0}}$ as follows:

$$
L \rightarrow\left(\begin{array}{cc}
0 & L^{-} \\
L^{+} & 0
\end{array}\right), \quad F_{D} \rightarrow\left(\begin{array}{cc}
L^{-} L^{+} & d L^{-} \\
d L^{+} & L^{+} L^{-}
\end{array}\right) .
$$

The appearance of the terms generated by an endomorphism L is a peculiar property of the curvature of a \mathbb{Z}_{N}-connection. Just this property of the curvature of a superconnection makes it possible to construct the representative of the Thom class of a fibre bundle rapidly decreasing in a fibre direction. This property plays also an essential part in the Atiyah-Jeffrey geometric approach $\left[{ }^{3}\right]$ to the Lagrangian of a topological field theory on a four-dimensional manifold [${ }^{4}$]. If, following the algebraic scheme described in this paper, we construct a \mathbb{Z}_{N}-connection on a noncommutative space with the help of analogues of differential forms with exterior differential d satisfying $d^{N}=0$, then the extra terms (11) of the curvature will enable us to construct an analogue of the representative of a Thom class rapidly decreasing along a fibre in the case of a noncommutative space. In turn, this representative could be taken as a starting point for an analogue of a topological field theory on a noncommutative space with BRST-like symmetry δ_{BRST} satisfying $\delta_{\mathrm{BRST}}^{N}=0$ up to gauge transformation. Since a topological field theory on a four-dimensional manifold is related to a supersymmetric Yang-Mills theory $\left[{ }^{11}\right]$, we may expect that a noncommutative analogue of a topological field theory could be related to a field theory with a fractional supersymmetry [${ }^{12}$].

ACKNOWLEDGEMENTS

The author is grateful to the referees for helpful suggestions and remarks. This work was supported by the Estonian Science Foundation (grant No. 6206).

REFERENCES

1. Mathai, V. and Quillen, D. Superconnections, Thom classes and equivariant differential forms. Topology, 1986, 25, 85-110.
2. Berline, N., Getzler, E. and Vergne, M. Heat Kernels and Dirac Operators. Springer, 2004.
3. Atiyah, M. F. and Jeffrey, L. Topological Lagrangians and cohomology. J. Geom. Phys., 1990, 7, 119-136.
4. Witten, E. Topological quantum field theory. Comm. Math. Phys, 1988, 117, 353-386.
5. Dubois-Violette, M. and Kerner, R. Universal q-differential calculus and q-analog of homological algebra. Acta Math. Univ. Comenian., 1996, 65, 175-188.
6. Dubois-Violette, M. Lectures on differentials, generalized differentials and on some examples related to theoretical physics. Math.QA/0005256.
7. Dubois-Violette, M. Lectures on graded differential algebras and noncommutative geometry. In Noncommutative Differential Geometry and Its Applications to Physics: Proceedings of the Workshop (Maeda, Y. et al., eds). Math. Phys. Stud., 2001, 23, 245-306.
8. Abramov, V. and Kerner, R. Exterior differentials of higher order and their covariant generalization. J. Math. Phys., 2000, 41, 5598-5614.
9. Abramov, V. On a graded q-differential algebra. Math.QA/0509481.
10. Kapranov, M. M. On the q-analog of homological algebra. Math.QA/9611005.
11. Kerner, R. Graded gauge theory. Commun. Math. Phys., 1983, 91, 213-234.
12. De Azcárraga, J. A. and Macfarlane, A. J. Group theoretical foundations of fractional supersymmetry. J. Math. Phys., 1996, 37, 1115-1127.

Superseostuse üldistus mittekommutatiivses geomeetrias

Abstract

Viktor Abramov On sisse toodud \mathbb{Z}_{N}-seostuse mõiste, mida võib vaadelda superseostuse ehk \mathbb{Z}_{2}-seostuse üldistusena. Superseostuse mõiste on antud V. Mathai ja D. Quilleni artiklis $\left[{ }^{1}\right]$, kus autorid on superseostust kasutanud vektorkonna topoloogiliste invariantide konstrueerimiseks. Hiljem on M. F. Atiyah ja L. Jeffrey [${ }^{3}$] kasutanud superseostuste formalismi E. Witteni [${ }^{4}$] topoloogilise kvantväljateooria geomeetrilise interpretatsiooni kirjeldamiseks. Superseostus tugineb oluliselt diferentsiaalvormide algebra ja supervektorkonna \mathbb{Z}_{2}-gradueeringutele. \mathbb{Z}_{N}-seostus defineeritakse seostuste teooria algebralise formalismi raames. Konstruktsioon baseerub \mathbb{Z}_{N}-gradueeringuga q-diferentsiaalalgebral $\mathcal{B} N$-diferentsiaaliga d, mis rahuldab tingimust $d^{N}=0\left(\left[^{5,6}\right]\right)$, ja \mathbb{Z}_{N}-gradueeringuga vasakpoolsel moodulil üle algebra \mathcal{B} gradueeringuga 0 elementide alamalgebra. On defineeritud $\mathbb{Z}_{N^{-}}$ seostuse kõverus ja tõestatud, et kõverus rahuldab Bianchi samasust.

