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Abstract. We propose the notion of &y-connection, wheréV > 2, which can be viewed
as a generalization of the notion oZa-connection or superconnection. We use the algebraic
approach to the theory of connections to give the definiticaz, -connection and to explore
its structure. It is well known that one of the basic struetuof the algebraic approach to the
theory of connections is a graded differential algebra wlifferential d satisfyingd® = 0.

In order to construct & y-generalization of a superconnection for aNy > 2, we make
use of aZy-gradedg-differential algebra, wherg is a primitive Nth root of unity, with
N-differential d satisfyingd” = 0. The concept of a gradeghdifferential algebra arises
naturally within the framework of noncommutative geomedtng the use of this algebra in our
construction involves the appearancegedeformed structures such as gradgecdommutator,
gradedg-Leibniz rule, andg-binomial coefficients. Particularly, iV = 2,¢q = —1, then
the notion of & y-connection coincides with the notion of a superconnectitya define the
curvature of & y-connection and prove that it satisfies the Bianchi identity

Key words: superconnection, covariant derivative, graded difféaénalgebra, graded
g-differential algebra.

1. INTRODUCTION

The concept of a superconnection was proposed by Mathai and Q[fiJlen
(see also?]) in the 1980s to represent the Thom class of a vector bundle by a
differential form having a Gaussian shape. Later, Atiyah and Jeffigyroposed
the geometric approach to a topological quantum field theory on a four-dioret
manifold [!] based on the superconnection formalism. Assuming that a vector
bundler : E — M has aZs-graded structure, i.e. it is a superbundle, the
total grading of anE-valued differential form can be defined as the sum of two
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gradings, one of which comes from tt#&-graded structure of the algebra of
differential forms on a base manifold and the other from @,-graded structure
of a superbundle®. A superconnection is a linear mapping of odd degree with
respect to this total grading, behaving like a graded differentiation wigheggo
the multiplication by differential forms. Consequently, if we wish to generalize
the notion of a superconnection to any integér- 2, we must have & y-graded
analogue of an algebra of differential forms, and assuming that a vaatalte has
also aZ -graded structure, we can elaborate a generalization of a supectionne
following the scheme proposed by Mathai and Quillen. In the present pape
introduce the notion of & y-connection, wheré/ is any integer satisfyingy > 2,
within the framework of an algebraic approach to the theory of connectibine
first component of our construction isZy-gradedg-differential algebra %],
whereq is a primitive Nth root of unity, denoted bys. This algebra plays the
role of an analogue of an algebra of differential forms. It should betioresd
that a differentiall of B satisfiess”¥ = 0. The second component iZa,-graded
left module& over the subalgebral C B of the elements of grading zero 6f
From a geometric point of view, a modulecan be considered as an analogue
of the space of sections ofZ-graded vector bundle. Taking the tensor product
& = B ®4 &, which can be viewed as an analogue of a spacg pfgraded
vector bundle valued differential forms, and defining #e-graded structure on
this product, we give the definition of Ay -connectionD in the spirit of Mathai
and Quillen. We show that th&th power of aZy-connection is the grading zero
endomorphism of the lef8-module&, and we define the curvatuie, of aZy-
connection byFp = DY. It is proved that the curvature of Zy-connection
satisfies the Bianchi identity.

2. GRADED g¢-DIFFERENTIAL ALGEBRAS

In this section we describe a generalization of a graded differential ralgeb
which naturally arises in the framework @fdeformed structures. This generaliza-
tion is called a gradeg-differential algebra, where is a primitive Nth root of
unity. We show that given a graded unital associative algebra@®weth element
satisfyinguy' = e, wheree is the identity element of this algebra, one can construct
the graded-differential algebra by means offacommutator.

Let B = @czB* be an associative unitdl-graded algebra oveE. We shall
denote the identity element &f by e and the grading of a homogeneous element
w € Bby|w|, i.e. ifw € B, then|w| = k. An algebra is said to be a graded
g-differential algebra ({°]), wheregq is a primitive N'th root of unity (V > 2), if it
is endowed with a linear mappinb: B* — B*+! of degreel satisfying the graded
g-Leibniz ruled(w ') = d(w) ' + ¢“lwd(W'), wherew, w’ € B, andd™ (w) = 0
for anyw € B. A mappingd is called anN-differential of a graded-differential
algebra. It is easy to see that a gradedifferential algebra is a generalization of
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the notion of a graded differential algebra, since a graded differaaltjabra is a
particular case of a gradeddifferential algebra ifvV = 2 andqg = —1.

From the graded structure of an algelsri follows that the subspadg® c B
of elements of grading zero is the subalgebra of an alg8brahe pair (B, d)
is said to be anV-differential calculus on a unital associative algebtaf B
is a graded;-differential algebra withV-differential d and A = BY. For any
k € Z the subspac#” of elements of grading has the structure of a bimodule
over the subalgebr® and a graded-differential algebra can be viewed as an
N-differential complex (§])

with differential d satisfying the graded-Leibniz rule. |If B is a Z-graded
g-differential algebra, then we can define the-graded structure on an algebra
B by puttingB? = ®,czBV+P, wherep = 0,1,2,..., N — 1, andp is the residue
class of an integgy moduloN. ThenB = @©,¢z, BP. In what follows, if a graded
structure of an algebr& is concerned, we shall always mean the above-described
Z n-graded structure dB. Since all graded structures considered in this paper are
Zn-graded structures, we always assume that the values of each itatexi e a
graded structure are elementszy. If there is no confusion, we shall denote the
values of indices by, 1,2, ..., N — 1 meaning the residue classes modi¥lo

Let us now show that if a graded unital associative algebra contairisrme et
v satisfyinguy' = e, wheree is the identity element of this algebra, then one equips
this algebra with theV-differential satisfying the gradeg-Leibniz rule, turning
this algebra into a gradegtdifferential algebra. Letd be an associative unital
Zn-graded algebra over the complex numb€rand A* c A be the subspace of
homogeneous elements of a gradingsiven a complex number+# 1, one defines
ag-commutator of two homogeneous elementsy’ € A by the formula

!
[w, w'], = ww' — gyl

Using the associativity of an algebrd and the propertyww’| = |w| + |w']
of its graded structure, it is easy to show that for any homogeneous dkemen
w,w,w” € Aitholds that

[w, w'w"]y = [w,w]qw” + q‘wlelw/[wy w']g. (1)

Given an element of grading 1, i.e. v € A', one can define the mapping
dy : AF — AF1 by the formulad,w = [v,w],, w € AF. It follows from the
property ofg-commutator (1) thatl, is the linear mapping of degree 1 satisfying
the gradedg-Leibniz rule d,(ww') = dy(w)w’ + ¢“lwd,(w'), wherew,w’
are homogeneous elements 4f Let[k], = 1+ ¢+ ¢*> + ... + ¢! and
[Klg! = [g[2]g - - - [Klg-



Lemma 1. For any integerk > 2 the kth power of the mapping, can be written
as follows

k
dfw = Zpgk)vk_iwvi,
1=0
wherew is a homogeneous elementéfand
i, |wls : i |wls k
P = (D) ey = (1) [ ' ] ’
! ! a

i(i —1)
——

|wli = i|w] +

The proof of this lemma is based on the following identities:

k k+1 k+1 + k
p(() ) pg) ) 17 p]E;+1 ) qlwl kp]E; )7
k+1 k + k .
pg )——pg)—qlwl kpz(- )1, 1<i<k.

Theorem 1.If N is an integer such tha > 2, ¢ is a primitive Nth root of unity,
A is a Zy-graded algebra containing an elementsatisfyingv’y = e, wheree
is the identity element of an algebsé, then. 4 equipped with the linear mapping
d, = [v, |4 is agraded;-differential algebra withV-differentiald,, i.e. d, satisfies
the graded;-Leibniz rule andz)Yw = 0 for anyw € A.

Proof. It follows from Lemma 1 that ifg is a primitive Nth root of unity, then

for any integerl = 1,2,..., N — 1 the coefficiempl(N) contains the factofV],
which vanishes in the case gfbeing a primitiveNth root of unity. This implies
p™ = 0. Thusd¥ (w) = vNw + (~1)NgInwuN. Taking into account that
vV = e, we obtaindY (w) = (1 + (~1)V¢"IM)w = Xw. The coefficient
A = 1+ (=1)Ngl*lv vanishes ifg is a primitive N'th root of unity. Indeed, if
N is an odd number, then — (¢™V)(N=1)/2 = 0. In the case of an even integer
N we havel + (¢N/2)N=1 = 1 4+ (~1)N=1 = 0, and this ends the proof of the
theorem.

For applications in differential geometry it is important to have a realization of
a graded;-differential algebra as an algebra of analogues of differential fomes
geometric space. The proved theorem allows us to construct a gratifierential
algebra taking as a starting point a generalized Clifford algebra. Thetsteuof
a generalized Clifford algebra suggests that we shall get an analbgneatgebra
of differential forms with anV-differential on a nhoncommutative space. Indeed,
let us remind that a generalized Clifford algeByav is a unital associative algebra
overC generated by, 72, . . ., 7, Which are subjected to the relations

Sqj—4)

Vv = q v, =1, i,5=12,...,p, )



wheregq is a primitive N'th root of unity and s@r) is the usual sign function. The
structure of a gradeg-differential algebra in the case of the generalized Clifford
algebra with two generators is studied if].[ In this case the corresponding
generalized Clifford algebré, y can be interpreted as an algebra of polynomial
functions on a reduced quantum plane. Let us denote, hythe generators of the
algebra in this case. The relations (2) take on the foym= qyz, 2V = ¢V = 1.
The algebraC, y becomes & -graded algebra if we assign the grading zero to
the generator, the grading 1 to the generatgrand define the grading of any
monomial made up of generatarsy as the sum of gradings of its factors. The
differential d is defined bydw = [y, w],,w € Con. Sincey" = 1, it follows
from Theorem 1 that the algebfa x is a graded;-differential algebra and is its
N-differential. We give this gradeg-differential algebra and itd/-differential d

the following geometric interpretation: the subalgebra of polynomials of ggadin
zero is the algebra of functions on a one-dimensional space with “cabedin,
and the elements of higher gradings expressed in terms of “coordinatel its
“differential” dx are the analogues of differential forms with exterior differential
We havedr = yA,z = y(z — qx). Sinced® # 0 for k < N, a differentialk-form

w may be expressed either by meangdif)* or by means ofl*z, where

ko |Klg ko 1—k
If w = (dz)* f(z), where f(z) is a polynomial of grading zero, andiv =

(dz)F+16F) (£), then

SW(f) = (Agz) N a " f — " A(f)),

where A is the homomorphism of the algebra of polynomials of grading zero
determined byA(z) = gx. The higher-order derivativegk) have the property

689(fg) =08 (f) g +d" A(f)50(9), k=0,1,2,....N 1,

wheres!” (g) = 22 — (A z) (g — A(g)) is the A-twisted derivative. A higher-

order derivativeSQ(ck) can be expressed in terms of the derivata%eas follows:
0 qgF-q" _
6(1{2) _ kY 4 — 9 1.
v T oz + 1—gq o
The realization of a gradegldifferential algebra as an algebra of analogues of

differential forms on an ordinary (commutative) space is constructet’Jn [et
x1,x9,...,x, be the coordinates of amdimensional spacR"™, C*°(R") be the
algebra of smootit-valued functions, andzq, dxo, . .., dx, be the differentials
of the coordinates. Led = {1,2,...,n} be the set of integerd, be a subset
of A/, and|I| be the number of elements ih Given any subsef of \, i.e.
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I = {ir,ig,...,ig} CN,1 <45 <ig <...ix <n,we associate td the formal
monomialdx;, wheredz; = dx;, dx;, .. .dz;, anddxy = 1. Let Q(R™) be the
free leftC>°(R™)-module generated by all formal monomidls;. Itis evident that
Q(R™) has a naturdf-graded structur@(R") = ¢, Q% (R"), whereQ®(R") is the
left C>°(R™)-module freely generated by alk;, wherel containsk elements. An
element of the modul@”(R") has the form

w= Y frde; = > fivig..ip iy dzy, . .. dx;, (3)

L|I|=k 1<i1<i2<...<1 <N

where fr = fii,..i, € C°(R"). Let us define the degree 1 linear operator
d : QF(R") — QF1(R") by the formula

k+1

m—1 .71]2 ]m Jk+1
do= Y gsdry, giijojuy, = Z q iy ; (4)
J|J|=k+1 Jm

wherew has the form (3) and/ = {j1,J2,...,Jk+1}- It can be shown that
d¥w = 0 for anyw € Q(R™). Thus we have th&/-differential complex

LR RY) LORRY) LOMYRT) 4, (5)

We shall call (5) an/V-differential de Rham complex. In order to define the
structure of an algebra on thé-differential de Rham complex (5), we introduce
the following notations: ifl,.J are two subsets ol satisfyingl N J = 0,
then we denote by(I, J) (a(Z,J)) the number of pairgi,j) € I x J such
that: > j(i < j), andc(I,J) = b(I,J) — a(I,J). Itis easy to check that
for any subsetd, J we haveb(I,J) = a(J,I), a(I,J) + b(I,J) = |I||J] and
c(I,J) = —c(J,I). Let us define the multiplication on the left>°(R™)-module
Q(R™) by the following rules:

if I
The left moduleQ2(R™) with the product defined by the rules (6) is a graded
associative algebra, and it can be shown thatXhdifferential d defined by (4)
satisfies the gradegtLeibniz rule with respect to this product, which implies that
Q(R™) is a graded;-differential algebra withV-differential d. We shall call an
element of this algebra a differential form addhe NV-exterior differential. It is
evident that takingg = —1 in (4), (6), we get the classical algebra of differential
forms with exterior differentiald satisfyingd?> = 0. It follows from (6) that
derdey = ¢ Ddzjde; = ¢!I1-20U7) gy ;dx;, and in the special case of
g = —1 this commutation relation depends only on the gradifggg.J|. This
leads to the supercommutativity of the algebra of differential forms in theictdss
case.
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3. Zn-CONNECTION AND ITS CURVATURE

In this section we give the definition of &y-connection, the curvature of
a Zy-connection, and prove the Bianchi identity. We also study the structure
of a Zy-connection and show that a superconnection is a particular case of a
Z x-connection forV = 2.

Let A be a unital associativ€-algebra,(B, d) be anN-differential calculus
overA, andé = @kezNEk' be aZy-graded left4-module. It is evident thaf has
the structure ofZ y-gradedC-vector space induced by a left-module structure
if one definesaé = (ae) &, wherea € C,¢ € &, e is the identity element of
A. LetEp = B ®4 £ be the tensor produdt ® 4 £ of the right.4-module B
and the left4-module&. A gradedg-differential algebra3 can be viewed as a
(B, B)-bimodule, which implies that the tensor prodic® 4 £ has the structure of
the left 3-module. Since an algebfacan also be viewed as &, .4)-bimodule,
the tensor produdfs = B ® 4 £ has also the leftd-module structure. It should
be mentioned thafz has also the structure @f-vector space which is the tensor
product ofC-vector space structures Bfand€.

Each factor in the tensor produ€t = B ® 4 £ has theZ-graded structure.
Using theseZ y-graded structures, one can construztagraded structure on the
tensor producfi as follows: given two homogeneous elements B,¢£ € £, one
defines the total grading of the element 4 £ € Eg by |[w® 4 €| = |w|+1£]|. Then

!
EB = ®reznhs  EF = Omu=kEp” = Omii—k B @4 E,

wherek, [, m € Zy. If we consider the tensor produgt as the lefi3-module, then
multiplication by a homogeneous elementc 3 of gradingk maps an element
¢ € &' into the elemenwe € &5, ie. &p « ExFF. If we consider the
tensor producfp as the left4-module, then multiplication by any element A
preserves th& y-graded structure dfz. Consequently, ifn + | = k, thengg’l is
the left.A-submodule of a lefid-module€}. Let us denote

T5(E) = @Ey', Q) =meEL, k>1.

The Z-graded left4-moduleI'3(&) is isomorphic to a leftd-module€. The
corresponding isomorphism: £ — T'g(€) is defined for any € & by o(§) =
e ®4 & € T'(€), wheree is the identity element afl. It is worth mentioning that
the isomorphisnp preserves the graded structures of thenodulesE andT'z(E),
i.e.o: EF — Eg’k.

Let End-(ég) be the space of endomorphisms of the vector spgee
End4 (€p) be the space of endomorphisms of the J&ftnodule&z, and Eng(Ep)
be the space of endomorphisms of the I&finoduleEg. Obviously, Eng(Eg) C
Ends(Es) C Endc(Eg). The space End&g) is aZy-graded unital associative
algebra if one takes the produdto B of two endomorphisms of the spaég
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as an algebra multiplication. THeéy-graded structure of this algebra as well as
the Z n-graded structures of the spaces Et€ks), Endz(Ei) are induced by the
total Z y-graded structure ofz. Thus we have the decomposition Eiifz) =
orEnd(E5), where En@(Eg) is the space of homogeneous endomorphisms of
gradingk of the spac&, and the similar decompositions for the spaces Hég),
Ends(Ep). The structure of a graded associative algebra offfig) allows us to
use theg-commutatorf4, B], = Ao B — ¢l41BIB o A, whereA, B € End:(&p),
and|A|, | B| are the corresponding gradings.

Definition 1. A Zy-gradedB-connection on thé&. y-graded leftB-module&y is
an endomorphisn® of degreel of the vector spacég satisfying the condition

D(w¢) = d(w) &+ ¢“lw D(), @)

wherew € B, £ € &g, andd is the N-differential of aZ y-gradedqg-differential
algebrals.

Since we use the same gradedlifferential algebraB in many of our
constructions, and in order to simplify the terminology, we shall ¢ala Zy-
connection on the modulés. Hence, ay-connectionD can be viewed as an
element of grading of the Z y-graded algebra Erd€s), i.e. D € End.(E5), and
the behaviour of this element with respect to the structure of théSlafiodule of
&g is fixed by the condition (7).

We can extend & n-connectionD to act on theZ y-graded algebra Erd&i)
in a way consistent with the gradeel_eibniz rule if we put

D(A)=[D,Al,=DoA—¢*AoD, AecEnd:(&s).
Itis evident thatD : Endk(€5) — Endi (€5) and

D(AB)=D(A)o B+ ¢“l Ao D(B).

Proposition 1. For any homogeneous endomorphisiof the leftB-module&s,
homogeneous elemenbof the algebraB, and¢{ € £ it holds that

D(A)(w€) = (1 = ") dw A(€) + ¢ w D(A) ().

It follows from Proposition 1 that ifA is a grading zero endomorphism of
the left A-moduleég, i.e. A € End)(€g), then D(A)(ué) = uD(A)(€) for
anyu € Aand¢ € Ez. ConsequentlyD(A) € Endy(Eg). Particularly, if
A € End}(Ep), thenD(A) € Endy(€g).

Proposition 2. For any Zy-connectionD the Nth power of an endomorphism
D € End.(&g) is the grading zero endomorphism of the IBfmodule&s, i.e.
DN ¢ Enc%(é‘g).

10



Proof. It suffices to show that for any homogeneausc B an endomorphism
D € Endc(Ep) satisfiesDN (w &) = w DV (€), where¢ € £z. We can expand the
kth power of an endomorphisi as follows:

k _ : mw| k k—m m
D =S [ b ] d ) o ®)
m=0 q

Since d is the N-differential of an algebra3 which impliesdw = 0, and
[ % } = 0 for ¢ being a primitiveNth root of unity, wherd < m < N — 1, the

expansion (8) takes on the form

DN (wg) = ¢Vl w DN (&) = w DV (¢).

Definition 2. The curvatureF of a Zy-connectionD is the endomorphism?Y
of grading zero of the leff. y-gradedB-modules, i.e. Fp = DV € End}(Ep).

Proposition 3. For any Zy-connectionD the curvatureFp of this connection
satisfies the Bianchi identit (F'p) = 0.

Proof. We haveD(Fp) = [D, Fpl, = Do Fp — Fpo D = DN+t — DN+1 —

In order to understand better the structure & -connection, we shall need
a notion of a covariant derivative. L¢It,0) be a differential calculus over an
algebral(, i.e. 9 is a-bimodule and : A — M is a linear mapping satisfying
the Leibniz ruled(ab) = o(a) b+ad(b) for anya, b € 2. LetF be a left2(-module.
A linear mappingV : § — MM ®g § is said to be a covariant derivative §nwith
respect to a differential calculydn, o) if it satisfies

V(af) = o(a) @2+ aV(f), C)

foranya € 2§ € §.
Let us show that aZp-connection D induces the covariant derivative.
According to the definition of & y-connection, we havé® : 5,;3 — 5};*1. The

left A-modulesg, 57 split into the direct sums

k m,l __ o0k 1,k—1 2,k—2 N—1,k+1

(C;B - @m_H:k- EB = gB @ EB @ 86 @ “e. @ SB 5
k+1 m,l 0,k+1 1,k 2,k—1 N—1,k+2
gB - @m+l:k+1 SB :gB @EB EBS @ @53 .

Letpi; : & — E4,pi : € — Q%(é’),ﬂ'k B — Bfp : £ — £ be
the projections of the leftA-modules onto theitd-submodules. It is evident
that each projection is the homomorphism of the correspondingdlaftodules,
Pk = Tk @4 p and

P =3 Dris Prilw®a8) =mp(w) @ap(E), YweEBEEE,
1
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The pair(B!,d) is the differential calculus over an algehraand€ is a left A-
module. Let us consider the linear mappiWg, : £ — Q4(€) defined by the
formulaVp = p1 o D o p.

Proposition 4. The linear mappingv p is the covariant derivative on a left-
module€ with respect to the differential calculy#', d). The covariant derivative
Vp preserves thé y-graded structures of the lefi-modules€ and Q%(€), i.e.

Vp: &= éé,’k.

Proof. In order to show thaV p, is the covariant derivative on a let-moduleé&,
we check the covariant derivative condition (9). For any A, £ € £ we have

Vp(ug) = pi1(D(o(u§))) = p1(D(uo(§))) = pi1(duo(§) +uDo(§))
= pi(du(e®@a§)) +upi (Do(§)) = p1(du®4§) +uVp(§)

= > puldu©aé) +uVp(é) = m(du) @4 Y pi(€) +uVp(é)

l l
= du®a&+uVp(é).

The algebraic approach to Zy-connection described in this section has a
geometric realization on a vector bundle in the cas&o& 2,¢q = —1 leading
to the known notion of a superconnection. Let us consider a supdeoiing=
ET @ E~ over a smootm-dimensional manifold/™. In this case leB3 be the
algebra of differential forms on a manifoldd™ andd be the exterior differential
of this algebra. It is evident thdl is a Z,-graded algebra, where the grading of
a homogeneous differential form is equal to its degree modulo 2. Theiaxter
differential satisfiesi> = 0 and we see that the algebra of differential forms on a
finite-dimensional manifold is a special case of a graglelifferential algebra for
N =2andq = —1. Let B = A be the algebra of smooth functions on a manifold
M"™, and€ = £ @ £ be the leftZ,-graded.A-module of smooth sections of a
superbundleZ. Then the tensor produi® 4 £ is the space of smooth differential
forms on a manifold\/™ with values in a superbundIE. The total grading of a
homogeneous differential form with valueshnis the sum of two gradings, where
the first is determined by the graded structure of the algebra of differéotias
and the second is determined by the graded structure of a superliuntie space
End:(&p) is the space of differential forms on a manifald with the values in the
superbundle Hoit¥Z, E'). Theg-commutator becomes the supercommutator if we
takeq = —1. Finally, the definition of & y-connection coincides in this special
case with the definition of a superconnection as it is givedlin [

Let us construct an example of Ay-connection. One can extend the
N-differential of an algebr# to act on theZ y-graded left5-module& in a way
consistent with the gradegtLeibniz rule by puttingd(w ®4 &) = d(w) ®4 &,
wherew € B, ¢ € £. Itis evident thatl € End-(E5). Let L be an endomorphism
of grading1 of a left . A-modulef, i.e. L € End}4(5). This endomorphism can be
extended to thé@-endomorphism of the leff-modulef in a way consistent with

12



the Z y-graded structure dfz by means ofl.(w ® 4 ¢) = ¢!“l w ® 4 L(€). Indeed,
if ({=w®4& € &, then
L(6¢) L(O(w ®.4€)) = L((6w) ®.4 &) = ¢ (0w) @4 L(9)
= 470 (¢¥w e L(€) = ¢" 9 L(Q).
Obviously,L € Ends(£5) C End:(Eg). The endomorphism = d+ L of grading

1 of the vector spacép is aZy-connection. Indeed, for any € B,( € g we
have

D(w¢) = (d+ L)(w¢) = d(w) + L(w¢)
= d(w) ¢+ q¥lwd(¢) + ¢¥lwL(¢)
= d(w)¢+ q|w|w D(Q).

If A is an endomorphism of a lefi-module&, then we can decompose it into
the homogeneous part;, i, j € Zy with respect to the y-grading of£, where

Aij © &7 — &' Then, for any elemen§ = & + & + ...+ Evo1 € € we
have A(§); = > ez, 4ij (&), whereA(¢); is the component of gradinge Zy

of the elementA(£). We can extend the action of homogeneous pasjsto the
Zn-graded leftB-module&p. If we associate théV x N-maitrix (A4;;),4,j € Zn

to an endomorphism, where the entries of the matrix are the homogeneous parts
of A, then in the case of we get

0 0 0 0 Lon_1
Lig 0 0 0 0

0 Ly O 0 0

0 0 Ly 0 0 . (10)

0o 0 0 .. 0 0

0 0 0 ... Lyaina O

Let us denote by{d™, L, Lo...Ly}, where m, k are non-negative integers,
the sum of all possible products made up of the mappihgs,, Lo,..., L,
where each product contains-times the differentiald and & mappings
Ly, Lo, ..., L succeeding in the same order. For instance ifoe 0 we have
{d", L1 Ly... Ly} = d™, and form = 2,k = 1 we have{d?,L} = d*L +
dLd+ Ld?% The curvature of th& y-connectionD = d + L can be written as

follows:
Fp=DN= Y {d",L'}.
m+k=N

Using the matrix associated 1o, we obtain theV x N-matrix corresponding to
the curvaturel’p, where the entry“p ;; of this matrix can be written as follows:

Fp,ij = Y {d™ LiiiLicvia. . Lipi}s (11)
m+k=Ni,j€Ly
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where m, k are non-negative integers runnimg,k = 0,1,...,N, and each
product in {d™, L;;—1 Li—1,—2...L;jy1,} contains k entries of the matrix
associated td,, which means that — j = k. For instance, ifN = 2, then from
(10) and (11) we obtain the matrix of a superconnecfiosa d + L and the matrix
of its curvature, which can be written in the standard notations of supaeiep
E=EME=E,LT = Ly, L~ = Ly as follows:
0 L~ L=LT dL™

L_’<L+ 0 ) FD_’( dL*  LYL- )
The appearance of the terms generated by an endomorphissna peculiar
property of the curvature of &y-connection. Just this property of the curvature of
a superconnection makes it possible to construct the representative d©hdm
class of a fibre bundle rapidly decreasing in a fibre direction. This ptppe
plays also an essential part in the Atiyah—Jeffrey geometric appréach fhe
Lagrangian of a topological field theory on a four-dimensional manifdld [
If, following the algebraic scheme described in this paper, we construct a
Zy-connection on a noncommutative space with the help of analogues of
differential forms with exterior differentiadl satisfyingd” = 0, then the extra
terms (11) of the curvature will enable us to construct an analogue of the
representative of a Thom class rapidly decreasing along a fibre in Heeofaa
noncommutative space. In turn, this representative could be taken agimagsta
point for an analogue of a topological field theory on a noncommutativeespih
BRST—Iike symmetry&_BRST satisfyingégRST = 0 up to gauge tran_sformation.
Since a topological field theory on a four-dimensional manifold is related to a
supersymmetric Yang-Mills theory']], we may expect that a noncommutative

analogue of a topological field theory could be related to a field theory with a
fractional supersymmetryq].
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Superseostuse uldistus mittekommutatiivses geomeetrias
Viktor Abramov

On sisse toodud. y-seostuse mdiste, mida v8ib vaadelda superseostuse ehk
Zo-seostuse Uldistusena. Superseostuse mdiste on antud V. Mathai ja D. Quil-
leni artiklis ['], kus autorid on superseostust kasutanud vektorkonna topoloogi-
liste invariantide konstrueerimiseks. Hiljem on M. F. Atiyah ja L. Jeffréy [
kasutanud superseostuste formalismi E. Wittéhitgpoloogilise kvantvaljateoo-
ria geomeetrilise interpretatsiooni kirjeldamiseks. Superseostus tuginebeblulis
diferentsiaalvormide algebra ja supervektorkohagradueeringuteleZ y-seos-
tus defineeritakse seostuste teooria algebralise formalismi raames. Ktsisbn
baseerul¥ y-gradueeringuga-diferentsiaalalgebraB N-diferentsiaaligad, mis
rahuldab tingimust’Y = 0 ([>9]), ja Zy-gradueeringuga vasakpoolsel moodulil
Ule algebraB gradueeringuga O elementide alamalgebra. On define€fiiud
seostuse kdverus ja tBestatud, et kdverus rahuldab Bianchi samasust.
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