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Abstract. We propose the notion of aZN -connection, whereN ≥ 2, which can be viewed
as a generalization of the notion of aZ2-connection or superconnection. We use the algebraic
approach to the theory of connections to give the definition of a ZN -connection and to explore
its structure. It is well known that one of the basic structures of the algebraic approach to the
theory of connections is a graded differential algebra withdifferential d satisfyingd2 = 0.
In order to construct aZN -generalization of a superconnection for anyN > 2, we make
use of aZN -gradedq-differential algebra, whereq is a primitive N th root of unity, with
N -differential d satisfyingdN = 0. The concept of a gradedq-differential algebra arises
naturally within the framework of noncommutative geometryand the use of this algebra in our
construction involves the appearance ofq-deformed structures such as gradedq-commutator,
gradedq-Leibniz rule, andq-binomial coefficients. Particularly, ifN = 2, q = −1, then
the notion of aZN -connection coincides with the notion of a superconnection. We define the
curvature of aZN -connection and prove that it satisfies the Bianchi identity.

Key words: superconnection, covariant derivative, graded differential algebra, graded
q-differential algebra.

1. INTRODUCTION

The concept of a superconnection was proposed by Mathai and Quillen[1]
(see also [2]) in the 1980s to represent the Thom class of a vector bundle by a
differential form having a Gaussian shape. Later, Atiyah and Jeffrey[3] proposed
the geometric approach to a topological quantum field theory on a four-dimensional
manifold [4] based on the superconnection formalism. Assuming that a vector
bundleπ : E → M has aZ2-graded structure, i.e. it is a superbundle, the
total grading of anE-valued differential form can be defined as the sum of two
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gradings, one of which comes from theZ2-graded structure of the algebra of
differential forms on a base manifoldM and the other from aZ2-graded structure
of a superbundleE. A superconnection is a linear mapping of odd degree with
respect to this total grading, behaving like a graded differentiation with respect to
the multiplication by differential forms. Consequently, if we wish to generalize
the notion of a superconnection to any integerN > 2, we must have aZN -graded
analogue of an algebra of differential forms, and assuming that a vectorbundle has
also aZN -graded structure, we can elaborate a generalization of a superconnection
following the scheme proposed by Mathai and Quillen. In the present paper we
introduce the notion of aZN -connection, whereN is any integer satisfyingN ≥ 2,
within the framework of an algebraic approach to the theory of connections. The
first component of our construction is aZN -gradedq-differential algebra [5−8],
whereq is a primitiveN th root of unity, denoted byB. This algebra plays the
role of an analogue of an algebra of differential forms. It should be mentioned
that a differentiald of B satisfiesdN = 0. The second component is aZN -graded
left moduleE over the subalgebraA ⊂ B of the elements of grading zero ofB.
From a geometric point of view, a moduleE can be considered as an analogue
of the space of sections of aZN -graded vector bundle. Taking the tensor product
EB = B ⊗A E , which can be viewed as an analogue of a space ofZN -graded
vector bundle valued differential forms, and defining theZN -graded structure on
this product, we give the definition of aZN -connectionD in the spirit of Mathai
and Quillen. We show that theN th power of aZN -connection is the grading zero
endomorphism of the leftB-moduleEB, and we define the curvatureFD of a ZN -
connection byFD = DN . It is proved that the curvature of aZN -connection
satisfies the Bianchi identity.

2. GRADED q-DIFFERENTIAL ALGEBRAS

In this section we describe a generalization of a graded differential algebra,
which naturally arises in the framework ofq-deformed structures. This generaliza-
tion is called a gradedq-differential algebra, whereq is a primitiveN th root of
unity. We show that given a graded unital associative algebra overC with elementv
satisfyingvN = e, wheree is the identity element of this algebra, one can construct
the gradedq-differential algebra by means of aq-commutator.

Let B = ⊕k∈ZB
k be an associative unitalZ-graded algebra overC. We shall

denote the identity element ofB by e and the grading of a homogeneous element
ω ∈ B by |ω|, i.e. if ω ∈ Bk, then|ω| = k. An algebraB is said to be a graded
q-differential algebra ([5,6]), whereq is a primitiveN th root of unity (N ≥ 2), if it
is endowed with a linear mappingd : Bk → Bk+1 of degree1 satisfying the graded
q-Leibniz ruled(ω ω′) = d(ω)ω′ + q|ω|ω d(ω′), whereω, ω′ ∈ B, anddN (ω) = 0
for anyω ∈ B. A mappingd is called anN -differential of a gradedq-differential
algebra. It is easy to see that a gradedq-differential algebra is a generalization of
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the notion of a graded differential algebra, since a graded differentialalgebra is a
particular case of a gradedq-differential algebra ifN = 2 andq = −1.

From the graded structure of an algebraB it follows that the subspaceB0 ⊂ B
of elements of grading zero is the subalgebra of an algebraB. The pair(B, d)
is said to be anN -differential calculus on a unital associative algebraA if B
is a gradedq-differential algebra withN -differential d andA = B0. For any
k ∈ Z the subspaceBk of elements of gradingk has the structure of a bimodule
over the subalgebraB0 and a gradedq-differential algebra can be viewed as an
N -differential complex ([6])

. . . →d Bk−1 →d Bk →d Bk+1 →d . . . ,

with differential d satisfying the gradedq-Leibniz rule. If B is a Z-graded
q-differential algebra, then we can define theZN -graded structure on an algebra
B by puttingBp̄ = ⊕i∈ZB

Ni+p, wherep = 0, 1, 2, . . . , N − 1, andp̄ is the residue
class of an integerp moduloN . ThenB = ⊕p∈ZN

Bp. In what follows, if a graded
structure of an algebraB is concerned, we shall always mean the above-described
ZN -graded structure ofB. Since all graded structures considered in this paper are
ZN -graded structures, we always assume that the values of each index related to a
graded structure are elements ofZN . If there is no confusion, we shall denote the
values of indices by0, 1, 2, . . . , N − 1 meaning the residue classes moduloN .

Let us now show that if a graded unital associative algebra contains an element
v satisfyingvN = e, wheree is the identity element of this algebra, then one equips
this algebra with theN -differential satisfying the gradedq-Leibniz rule, turning
this algebra into a gradedq-differential algebra. LetA be an associative unital
ZN -graded algebra over the complex numbersC andAk ⊂ A be the subspace of
homogeneous elements of a gradingk. Given a complex numberq 6= 1, one defines
a q-commutator of two homogeneous elementsw, w′ ∈ A by the formula

[w, w′]q = ww′ − q|w||w′|w′w.

Using the associativity of an algebraA and the property|ww′| = |w| + |w′|
of its graded structure, it is easy to show that for any homogeneous elements
w, w′, w′′ ∈ A it holds that

[w, w′w′′]q = [w, w′]qw
′′ + q|w||w′|w′[w, w′′]q. (1)

Given an elementv of grading 1, i.e. v ∈ A1, one can define the mapping
dv : Ak → Ak+1 by the formuladvw = [v, w]q, w ∈ Ak. It follows from the
property ofq-commutator (1) thatdv is the linear mapping of degree 1 satisfying
the gradedq-Leibniz rule dv(ww′) = dv(w)w′ + q|w|wdv(w

′), where w, w′

are homogeneous elements ofA. Let [k]q = 1 + q + q2 + . . . + qk−1 and
[k]q! = [1]q[2]q . . . [k]q.
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Lemma 1. For any integerk ≥ 2 thekth power of the mappingdv can be written
as follows:

dk
vw =

k
∑

i=0

p
(k)
i vk−iwvi,

wherew is a homogeneous element ofA and

p
(k)
i = (−1)iq|w|i

[k]q!

[i]q![k − i]q!
= (−1)iq|w|i

[

k

i

]

q

,

|w|i = i|w| +
i(i − 1)

2
.

The proof of this lemma is based on the following identities:

p
(k)
0 = p

(k+1)
0 = 1, p

(k+1)
k+1 = −q|w|+kp

(k)
k ,

p
(k+1)
i = p

(k)
i − q|w|+kp

(k)
i−1, 1 ≤ i ≤ k.

Theorem 1. If N is an integer such thatN ≥ 2, q is a primitiveN th root of unity,
A is a ZN -graded algebra containing an elementv satisfyingvN = e, wheree

is the identity element of an algebraA, thenA equipped with the linear mapping
dv = [v, ]q is a gradedq-differential algebra withN -differentialdv, i.e. dv satisfies
the gradedq-Leibniz rule anddN

v w = 0 for anyw ∈ A.

Proof. It follows from Lemma 1 that ifq is a primitiveN th root of unity, then
for any integerl = 1, 2, . . . , N − 1 the coefficientp(N)

l contains the factor[N ]q
which vanishes in the case ofq being a primitiveN th root of unity. This implies
p
(N)
l = 0. ThusdN

v (w) = vNw + (−1)Nq|w|N wvN . Taking into account that
vN = e, we obtaindN

v (w) = (1 + (−1)Nq|w|N )w = λ w. The coefficient
λ = 1 + (−1)Nq|w|N vanishes ifq is a primitiveN th root of unity. Indeed, if
N is an odd number, then1 − (qN )(N−1)/2 = 0. In the case of an even integer
N we have1 + (qN/2)N−1 = 1 + (−1)N−1 = 0, and this ends the proof of the
theorem.

For applications in differential geometry it is important to have a realization of
a gradedq-differential algebra as an algebra of analogues of differential formson a
geometric space. The proved theorem allows us to construct a gradedq-differential
algebra taking as a starting point a generalized Clifford algebra. The structure of
a generalized Clifford algebra suggests that we shall get an analogue of an algebra
of differential forms with anN -differential on a noncommutative space. Indeed,
let us remind that a generalized Clifford algebraCp,N is a unital associative algebra
overC generated byγ1, γ2, . . . , γp which are subjected to the relations

γiγj = qsg(j−i) γjγi, γN
i = 1, i, j = 1, 2, . . . , p, (2)
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whereq is a primitiveN th root of unity and sg(x) is the usual sign function. The
structure of a gradedq-differential algebra in the case of the generalized Clifford
algebra with two generators is studied in [9]. In this case the corresponding
generalized Clifford algebraC2,N can be interpreted as an algebra of polynomial
functions on a reduced quantum plane. Let us denote byx, y the generators of the
algebra in this case. The relations (2) take on the formxy = q yx, xN = yN = 1.
The algebraC2,N becomes aZN -graded algebra if we assign the grading zero to
the generatorx, the grading 1 to the generatory and define the grading of any
monomial made up of generatorsx, y as the sum of gradings of its factors. The
differential d is defined bydw = [y, w]q, w ∈ C2,N . SinceyN = 1, it follows
from Theorem 1 that the algebraC2,N is a gradedq-differential algebra andd is its
N -differential. We give this gradedq-differential algebra and itsN -differentiald
the following geometric interpretation: the subalgebra of polynomials of grading
zero is the algebra of functions on a one-dimensional space with “coordinate” x,
and the elements of higher gradings expressed in terms of “coordinate”x and its
“differential” dx are the analogues of differential forms with exterior differentiald.
We havedx = y∆qx = y(x − qx). Sincedk 6= 0 for k < N , a differentialk-form
w may be expressed either by means of(dx)k or by means ofdkx, where

dkx =
[k]q

qk(k−1)/2
(dx)k x1−k.

If w = (dx)k f(x), wheref(x) is a polynomial of grading zero, anddw =

(dx)k+1δ
(k)
x (f), then

δ(k)
x (f) = (∆qx)−1(q−kf − qkA(f)),

where A is the homomorphism of the algebra of polynomials of grading zero
determined byA(x) = qx. The higher-order derivativesδ(k)

x have the property

δ(k)
x (fg) = δ(k)

x (f) g + qk A(f) δ(0)
x (g), k = 0, 1, 2, . . . , N − 1,

whereδ
(0)
x (g) = ∂g

∂x = (∆qx)−1(g − A(g)) is theA-twisted derivative. A higher-

order derivativeδ(k)
x can be expressed in terms of the derivative∂

∂x as follows:

δ(k)
x = qk ∂

∂x
+

q−k − qk

1 − q
x−1.

The realization of a gradedq-differential algebra as an algebra of analogues of
differential forms on an ordinary (commutative) space is constructed in [10]. Let
x1, x2, . . . , xn be the coordinates of ann-dimensional spaceRn, C∞(Rn) be the
algebra of smoothC-valued functions, anddx1, dx2, . . . , dxn be the differentials
of the coordinates. LetN = {1, 2, . . . , n} be the set of integers,I be a subset
of N , and |I| be the number of elements inI. Given any subsetI of N , i.e.
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I = {i1, i2, . . . , ik} ⊂ N , 1 ≤ i1 < i2 < . . . ik ≤ n, we associate toI the formal
monomialdxI , wheredxI = dxi1dxi2 . . . dxin anddx∅ = 1. Let Ω(Rn) be the
free leftC∞(Rn)-module generated by all formal monomialsdxI . It is evident that
Ω(Rn) has a naturalZ-graded structureΩ(Rn) = ⊕kΩ

k(Rn), whereΩk(Rn) is the
left C∞(Rn)-module freely generated by alldxI , whereI containsk elements. An
element of the moduleΩk(Rn) has the form

ω =
∑

I,|I|=k

fI dxI =
∑

1≤i1<i2<...<ik≤n

fi1i2...ikdxi1dxi2 . . . dxik , (3)

wherefI = fi1i2...ik ∈ C∞(Rn). Let us define the degree 1 linear operator
d : Ωk(Rn) → Ωk+1(Rn) by the formula

dω =
∑

J,|J |=k+1

gJdxJ , gj1j2...jk+1
=

k+1
∑

m=1

qm−1
∂fj1j2...ĵm...jk+1

∂xjm

, (4)

whereω has the form (3) andJ = {j1, j2, . . . , jk+1}. It can be shown that
dNω = 0 for anyω ∈ Ω(Rn). Thus we have theN -differential complex

. . . →d Ωk−1(Rn) →d Ωk(Rn) →d Ωk+1(Rn) →d . . . (5)

We shall call (5) anN -differential de Rham complex. In order to define the
structure of an algebra on theN -differential de Rham complex (5), we introduce
the following notations: ifI, J are two subsets ofN satisfying I ∩ J = ∅,
then we denote byb(I, J) (a(I, J)) the number of pairs(i, j) ∈ I × J such
that i > j (i < j), and c(I, J) = b(I, J) − a(I, J). It is easy to check that
for any subsetsI, J we haveb(I, J) = a(J, I), a(I, J) + b(I, J) = |I||J | and
c(I, J) = −c(J, I). Let us define the multiplication on the leftC∞(Rn)-module
Ω(Rn) by the following rules:

f dxI = dxI f, dxI dxJ =

{

0 if I ∩ J 6= ∅,
qb(I,J) dxI∪J if I ∩ J = ∅.

(6)

The left moduleΩ(Rn) with the product defined by the rules (6) is a graded
associative algebra, and it can be shown that theN -differential d defined by (4)
satisfies the gradedq-Leibniz rule with respect to this product, which implies that
Ω(Rn) is a gradedq-differential algebra withN -differential d. We shall call an
element of this algebra a differential form andd theN -exterior differential. It is
evident that takingq = −1 in (4), (6), we get the classical algebra of differential
forms with exterior differentiald satisfyingd2 = 0. It follows from (6) that
dxIdxJ = qc(I,J)dxJdxI = q|I||J |−2a(I,J)dxJdxI , and in the special case of
q = −1 this commutation relation depends only on the gradings|I|, |J |. This
leads to the supercommutativity of the algebra of differential forms in the classical
case.
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3. ZN -CONNECTION AND ITS CURVATURE

In this section we give the definition of aZN -connection, the curvature of
a ZN -connection, and prove the Bianchi identity. We also study the structure
of a ZN -connection and show that a superconnection is a particular case of a
ZN -connection forN = 2.

Let A be a unital associativeC-algebra,(B, d) be anN -differential calculus
overA, andE = ⊕k∈ZN

Ek be aZN -graded leftA-module. It is evident thatE has
the structure ofZN -gradedC-vector space induced by a leftA-module structure
if one definesαξ = (α e) ξ, whereα ∈ C, ξ ∈ E , e is the identity element of
A. Let EB = B ⊗A E be the tensor productB ⊗A E of the rightA-moduleB
and the leftA-moduleE . A gradedq-differential algebraB can be viewed as a
(B,B)-bimodule, which implies that the tensor productB⊗A E has the structure of
the leftB-module. Since an algebraB can also be viewed as an(A,A)-bimodule,
the tensor productEB = B ⊗A E has also the leftA-module structure. It should
be mentioned thatEB has also the structure ofC-vector space which is the tensor
product ofC-vector space structures ofB andE .

Each factor in the tensor productEB = B ⊗A E has theZN -graded structure.
Using theseZN -graded structures, one can construct aZN -graded structure on the
tensor productEB as follows: given two homogeneous elementsω ∈ B, ξ ∈ E , one
defines the total grading of the elementω⊗A ξ ∈ EB by |ω⊗A ξ| = |ω|+ |ξ|. Then

EB = ⊕k∈ZN
Ek
B, Ek

B = ⊕m+l=kE
m,l
B = ⊕m+l=k Bm ⊗A E l,

wherek, l, m ∈ ZN . If we consider the tensor productEB as the leftB-module, then
multiplication by a homogeneous elementω ∈ B of gradingk maps an element
ξ ∈ Em,l

B into the elementωξ ∈ Em+k,l
B , i.e. En

B →ω En+k
B . If we consider the

tensor productEB as the leftA-module, then multiplication by any elementu ∈ A

preserves theZN -graded structure ofEB. Consequently, ifm + l = k, thenEm,l
B is

the leftA-submodule of a leftA-moduleEk
B. Let us denote

ΓB(E) = ⊕lE
0,l
B , Ωk

B(E) = ⊕lE
k,l
B , k ≥ 1.

The ZN -graded leftA-moduleΓB(E) is isomorphic to a leftA-moduleE . The
corresponding isomorphism% : E → ΓB(E) is defined for anyξ ∈ E by %(ξ) =
e ⊗A ξ ∈ ΓB(E), wheree is the identity element ofA. It is worth mentioning that
the isomorphism% preserves the graded structures of theA-modulesE andΓB(E),
i.e. % : Ek → E0,k

B .
Let EndC(EB) be the space of endomorphisms of the vector spaceEB,

EndA(EB) be the space of endomorphisms of the leftA-moduleEB, and EndB(EB)
be the space of endomorphisms of the leftB-moduleEB. Obviously, EndB(EB) ⊂
EndA(EB) ⊂ EndC(EB). The space EndC(EB) is a ZN -graded unital associative
algebra if one takes the productA ◦ B of two endomorphisms of the spaceEB
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as an algebra multiplication. TheZN -graded structure of this algebra as well as
the ZN -graded structures of the spaces EndA(EB), EndB(EB) are induced by the
total ZN -graded structure ofEB. Thus we have the decomposition EndC(EB) =
⊕kEndk

C
(EB), where Endk

C
(EB) is the space of homogeneous endomorphisms of

gradingk of the spaceEB, and the similar decompositions for the spaces EndA(EB),
EndB(EB). The structure of a graded associative algebra of EndC(EB) allows us to
use theq-commutator[A, B]q = A ◦ B − q|A||B|B ◦ A, whereA, B ∈ EndC(EB),
and|A|, |B| are the corresponding gradings.

Definition 1. A ZN -gradedB-connection on theZN -graded leftB-moduleEB is
an endomorphismD of degree1 of the vector spaceEB satisfying the condition

D(ω ξ) = d(ω) ξ + q|ω|ω D(ξ), (7)

whereω ∈ B, ξ ∈ EB, andd is theN -differential of aZN -gradedq-differential
algebraB.

Since we use the same gradedq-differential algebraB in many of our
constructions, and in order to simplify the terminology, we shall callD a ZN -
connection on the moduleEB. Hence, aZN -connectionD can be viewed as an
element of grading1 of theZN -graded algebra EndC(EB), i.e. D ∈ End1

C
(EB), and

the behaviour of this element with respect to the structure of the leftB-module of
EB is fixed by the condition (7).

We can extend aZN -connectionD to act on theZN -graded algebra EndC(EB)
in a way consistent with the gradedq-Leibniz rule if we put

D(A) = [D, A]q = D ◦ A − q|A|A ◦ D, A ∈ EndC(EB).

It is evident thatD : Endk
C
(EB) → Endk+1

C
(EB) and

D(A B) = D(A) ◦ B + q|A|A ◦ D(B).

Proposition 1. For any homogeneous endomorphismA of the leftB-moduleEB,
homogeneous elementω of the algebraB, andξ ∈ EB it holds that

D(A)(ωξ) = (1 − q|A|) dω A(ξ) + q|ω| ω D(A)(ξ).

It follows from Proposition 1 that ifA is a grading zero endomorphism of
the left A-moduleEB, i.e. A ∈ End0A(EB), thenD(A)(uξ) = u D(A)(ξ) for
any u ∈ A and ξ ∈ EB. Consequently,D(A) ∈ End1A(EB). Particularly, if
A ∈ End0B(EB), thenD(A) ∈ End1A(EB).

Proposition 2. For any ZN -connectionD the N th power of an endomorphism
D ∈ End1

C
(EB) is the grading zero endomorphism of the leftB-moduleEB, i.e.

DN ∈ End0B(EB).
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Proof. It suffices to show that for any homogeneousω ∈ B an endomorphism
D ∈ EndC(EB) satisfiesDN (ω ξ) = ω DN (ξ), whereξ ∈ EB. We can expand the
kth power of an endomorphismD as follows:

Dk(ω ξ) =
k

∑

m=0

qm|ω|

[

k

m

]

q

dk−m(ω) Dm(ξ). (8)

Since d is the N -differential of an algebraB which implies dNω = 0, and
[

N
m

]

q
= 0 for q being a primitiveN th root of unity, where1 ≤ m ≤ N − 1, the

expansion (8) takes on the form

DN (ωξ) = qN |ω| ω DN (ξ) = ω DN (ξ).

Definition 2. The curvatureFD of a ZN -connectionD is the endomorphismDN

of grading zero of the leftZN -gradedB-moduleEB, i.e. FD = DN ∈ End0B(EB).

Proposition 3. For any ZN -connectionD the curvatureFD of this connection
satisfies the Bianchi identityD(FD) = 0.

Proof. We haveD(FD) = [D, FD]q = D ◦ FD − FD ◦ D = DN+1 − DN+1 = 0.

In order to understand better the structure of aZN -connection, we shall need
a notion of a covariant derivative. Let(M, d) be a differential calculus over an
algebraA, i.e. M is aA-bimodule andd : A → M is a linear mapping satisfying
the Leibniz ruled(ab) = d(a) b+a d(b) for anya, b ∈ A. LetF be a leftA-module.
A linear mapping∇ : F → M ⊗A F is said to be a covariant derivative onF with
respect to a differential calculus(M, d) if it satisfies

∇(af) = d(a) ⊗A f + a∇(f), (9)

for anya ∈ A, f ∈ F.
Let us show that aZN -connection D induces the covariant derivative.

According to the definition of aZN -connection, we haveD : Ek
B → Ek+1

B . The
left A-modulesEk

B, Ek+1
B split into the direct sums

Ek
B = ⊕m+l=k Em,l

B = E0,k
B ⊕ E1,k−1

B ⊕ E2,k−2
B ⊕ . . . ⊕ EN−1,k+1

B ,

Ek+1
B = ⊕m+l=k+1 Em,l

B = E0,k+1
B ⊕ E1,k

B ⊕ E2,k−1 ⊕ . . . ⊕ EN−1,k+2
B .

Let pi,j : EB → E i,j
B , pi : EB → Ωi

B(E), πk : B → Bk, ρl : E → E l be
the projections of the leftA-modules onto theirA-submodules. It is evident
that each projection is the homomorphism of the corresponding leftA-modules,
pk,l = πk ⊗A ρl and

pk =
∑

l

pk,l, pk,l(ω ⊗A ξ) = πk(ω) ⊗A ρl(ξ), ∀ω ∈ B, ξ ∈ E .

11



The pair(B1, d) is the differential calculus over an algebraA andE is a leftA-
module. Let us consider the linear mapping∇D : E → Ω1

B(E) defined by the
formula∇D = p1 ◦ D ◦ %.

Proposition 4. The linear mapping∇D is the covariant derivative on a leftA-
moduleE with respect to the differential calculus(B1, d). The covariant derivative
∇D preserves theZN -graded structures of the leftA-modulesE and Ω1

B(E), i.e.

∇D : Ek → E1,k
B .

Proof. In order to show that∇D is the covariant derivative on a leftA-moduleE ,
we check the covariant derivative condition (9). For anyu ∈ A, ξ ∈ E we have

∇D(uξ) = p1(D(%(uξ))) = p1(D(u%(ξ))) = p1(du %(ξ) + u D%(ξ))

= p1(du (e ⊗A ξ)) + u p1 (D%(ξ)) = p1(du ⊗A ξ) + u∇D(ξ)

=
∑

l

p1,l(du ⊗A ξ) + u∇D(ξ) = π1(du) ⊗A

∑

l

ρl(ξ) + u∇D(ξ)

= du ⊗A ξ + u∇D(ξ).

The algebraic approach to aZN -connection described in this section has a
geometric realization on a vector bundle in the case ofN = 2, q = −1 leading
to the known notion of a superconnection. Let us consider a superbundle E =
E+ ⊕ E− over a smoothn-dimensional manifoldMn. In this case letB be the
algebra of differential forms on a manifoldMn andd be the exterior differential
of this algebra. It is evident thatB is a Z2-graded algebra, where the grading of
a homogeneous differential form is equal to its degree modulo 2. The exterior
differential satisfiesd2 = 0 and we see that the algebra of differential forms on a
finite-dimensional manifold is a special case of a gradedq-differential algebra for
N = 2 andq = −1. LetB0 = A be the algebra of smooth functions on a manifold
Mn, andE = E+ ⊕ E− be the leftZ2-gradedA-module of smooth sections of a
superbundleE. Then the tensor productB⊗A E is the space of smooth differential
forms on a manifoldMn with values in a superbundleE. The total grading of a
homogeneous differential form with values inE is the sum of two gradings, where
the first is determined by the graded structure of the algebra of differential forms
and the second is determined by the graded structure of a superbundleE. The space
EndC(EB) is the space of differential forms on a manifoldM with the values in the
superbundle Hom(E, E). Theq-commutator becomes the supercommutator if we
takeq = −1. Finally, the definition of aZN -connection coincides in this special
case with the definition of a superconnection as it is given in [2].

Let us construct an example of aZN -connection. One can extend the
N -differential of an algebraB to act on theZN -graded leftB-moduleEB in a way
consistent with the gradedq-Leibniz rule by puttingd(ω ⊗A ξ) = d(ω) ⊗A ξ,
whereω ∈ B, ξ ∈ E . It is evident thatd ∈ End1

C
(EB). Let L be an endomorphism

of grading1 of a leftA-moduleE , i.e. L ∈ End1A(E). This endomorphism can be
extended to theB-endomorphism of the leftB-moduleEB in a way consistent with
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theZN -graded structure ofEB by means ofL(ω ⊗A ξ) = q|ω| ω ⊗A L(ξ). Indeed,
if ζ = ω ⊗A ξ ∈ EB, then

L(θζ) = L(θ(ω ⊗A ξ)) = L((θω) ⊗A ξ) = q|θ|+|ω|(θω) ⊗A L(ξ)

= q|θ| θ (q|ω|ω ⊗A L(ξ)) = q|θ| θ L(ζ).

Obviously,L ∈ End1B(EB) ⊂ End1
C
(EB). The endomorphismD = d+L of grading

1 of the vector spaceEB is aZN -connection. Indeed, for anyω ∈ B, ζ ∈ EB we
have

D(ωζ) = (d + L)(ωζ) = d(ωζ) + L(ωζ)

= d(ω) ζ + q|ω|ω d(ζ) + q|ω|ωL(ζ)

= d(ω)ζ + q|ω|ω D(ζ).

If A is an endomorphism of a leftA-moduleE , then we can decompose it into
the homogeneous partsAij , i, j ∈ ZN with respect to theZN -grading ofE , where
Aij : Ej → E i. Then, for any elementξ = ξ0 + ξ1 + . . . + ξN−1 ∈ E we
haveA(ξ)i =

∑

j∈ZN
Aij(ξj), whereA(ξ)i is the component of gradingi ∈ ZN

of the elementA(ξ). We can extend the action of homogeneous partsAij to the
ZN -graded leftB-moduleEB. If we associate theN × N -matrix (Aij), i, j ∈ ZN

to an endomorphismA, where the entries of the matrix are the homogeneous parts
of A, then in the case ofL we get





















0 0 0 . . . 0 L0,N−1

L1,0 0 0 . . . 0 0
0 L2,1 0 . . . 0 0
0 0 L3,2 . . . 0 0

. . .

0 0 0 . . . 0 0
0 0 0 . . . LN−1,N−2 0





















. (10)

Let us denote by{dm, L1 L2 . . . Lk}, where m, k are non-negative integers,
the sum of all possible products made up of the mappingsd, L1, L2, . . . , Lk,
where each product containsm-times the differentiald and k mappings
L1, L2, . . . , Lk succeeding in the same order. For instance, fork = 0 we have
{dm, L1 L2 . . . Lk} = dm, and form = 2, k = 1 we have{d2, L} = d2 L +
d L d + L d2. The curvature of theZN -connectionD = d + L can be written as
follows:

FD = DN =
∑

m+k=N

{dm, Lk}.

Using the matrix associated toL, we obtain theN × N -matrix corresponding to
the curvatureFD, where the entryFD,ij of this matrix can be written as follows:

FD,ij =
∑

m+k=N,i,j∈ZN

{dm, Li,i−1 Li−1,i−2 . . . Lj+1,j}, (11)
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where m, k are non-negative integers runningm, k = 0, 1, . . . , N , and each
product in {dm, Li,i−1 Li−1,i−2 . . . Lj+1,j} contains k entries of the matrix
associated toL, which means thati − j = k. For instance, ifN = 2, then from
(10) and (11) we obtain the matrix of a superconnectionD = d + L and the matrix
of its curvature, which can be written in the standard notations of supergeometry
E0̄ = E+, E1̄ = E−, L+ = L0̄1̄, L

− = L1̄0̄ as follows:

L →

(

0 L−

L+ 0

)

, FD →

(

L−L+ dL−

dL+ L+L−

)

.

The appearance of the terms generated by an endomorphismL is a peculiar
property of the curvature of aZN -connection. Just this property of the curvature of
a superconnection makes it possible to construct the representative of the Thom
class of a fibre bundle rapidly decreasing in a fibre direction. This property
plays also an essential part in the Atiyah–Jeffrey geometric approach [3] to the
Lagrangian of a topological field theory on a four-dimensional manifold [4].
If, following the algebraic scheme described in this paper, we construct a
ZN -connection on a noncommutative space with the help of analogues of
differential forms with exterior differentiald satisfyingdN = 0, then the extra
terms (11) of the curvature will enable us to construct an analogue of the
representative of a Thom class rapidly decreasing along a fibre in the case of a
noncommutative space. In turn, this representative could be taken as a starting
point for an analogue of a topological field theory on a noncommutative space with
BRST-like symmetryδBRST satisfyingδN

BRST = 0 up to gauge transformation.
Since a topological field theory on a four-dimensional manifold is related to a
supersymmetric Yang-Mills theory [11], we may expect that a noncommutative
analogue of a topological field theory could be related to a field theory with a
fractional supersymmetry [12].
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Superseostuse üldistus mittekommutatiivses geomeetrias

Viktor Abramov

On sisse toodudZN -seostuse mõiste, mida võib vaadelda superseostuse ehk
Z2-seostuse üldistusena. Superseostuse mõiste on antud V. Mathai ja D. Quil-
leni artiklis [1], kus autorid on superseostust kasutanud vektorkonna topoloogi-
liste invariantide konstrueerimiseks. Hiljem on M. F. Atiyah ja L. Jeffrey [3]
kasutanud superseostuste formalismi E. Witteni [4] topoloogilise kvantväljateoo-
ria geomeetrilise interpretatsiooni kirjeldamiseks. Superseostus tugineb oluliselt
diferentsiaalvormide algebra ja supervektorkonnaZ2-gradueeringutele.ZN -seos-
tus defineeritakse seostuste teooria algebralise formalismi raames. Konstruktsioon
baseerubZN -gradueeringugaq-diferentsiaalalgebralB N -diferentsiaaligad, mis
rahuldab tingimustdN = 0 ([5,6]), ja ZN -gradueeringuga vasakpoolsel moodulil
üle algebraB gradueeringuga 0 elementide alamalgebra. On defineeritudZN -
seostuse kõverus ja tõestatud, et kõverus rahuldab Bianchi samasust.

15


