On polynomials that are weakly uniformly continuous on the unit ball of a Banach space

Kristel Mikkor

Institute of Pure Mathematics, University of Tartu, 50090 Tartu, Estonia; kristelm@math.ut.ee

Received 14 October 2005, in revised form 19 December 2005

Abstract. We prove quantitative strengthenings of results on polynomials that are weakly uniformly continuous on the unit ball of a Banach space due to Aron, Lindström, Ruess, and Ryan (*Proc. Amer. Math. Soc.*, 1999, **127**, 1119–1125) and to Toma (*Aplicações holomorfas e polinômios* τ -contínuos. 1993). Our method is based on the uniform factorization of compact sets of compact operators.

Key words: Banach spaces, uniform compact factorization, *n*-homogeneous polynomials.

1. INTRODUCTION

Let X and Y be Banach spaces over the same, either real or complex, field \mathbb{K} . We denote by $\mathcal{L}(X, Y)$ the Banach space of all continuous linear operators from X to Y, and by $\mathcal{K}(X, Y)$ its subspace of compact operators.

Let $\mathcal{L}^{s}(^{n}X)$ denote the Banach space of continuous symmetric *n*-linear forms on X and let $\mathcal{P}(^{n}X)$ denote the Banach space of continuous *n*-homogeneous polynomials on X. Then for each $P \in \mathcal{P}(^{n}X)$ there is a unique $A_{P} \in \mathcal{L}^{s}(^{n}X)$ satisfying $P(x) = A_{P}(x, ..., x)$ for each $x \in X$.

Recall that $P \in \mathcal{P}(^nX)$ is weakly uniformly continuous on the closed unit ball B_X of X if for each $\epsilon > 0$ there are $x_1^*, \ldots, x_n^* \in X^*$ and $\delta > 0$ such that if $x, y \in B_X$, $|x_i^*(x - y)| < \delta$ for $i = 1, \ldots, n$, then $|P(x) - P(y)| < \epsilon$. Let $\mathcal{P}_{wu}(^nX)$ denote the subspace of $\mathcal{P}(^nX)$ consisting of the polynomials that are weakly uniformly continuous on B_X . The corresponding subspace of $\mathcal{L}^s(^nX)$ is denoted by $\mathcal{L}_{wu}^s(^nX)$. Notice that $\mathcal{P}_{wu}(^nX)$, with the norm induced from $\mathcal{P}(^nX)$, is a Banach space (see [¹], Proposition 2.4).

For each $P \in \mathcal{P}(^nX)$ there is a linear operator $T_P : X \to \mathcal{L}^s(^{n-1}X)$ defined by $(T_Px_1)(x_2, ..., x_n) = A_P(x_1, x_2, ..., x_n)$. Clearly, the correspondence $A_P \to T_P$ is linear and $||T_P|| = ||A_P||$. According to [¹], $P \in \mathcal{P}_{wu}(^nX)$ if and only if $T_P \in \mathcal{K}(X, \mathcal{L}^s(^{n-1}X))$. Moreover, if $P \in \mathcal{P}_{wu}(^nX)$, then $T_P \in \mathcal{K}(X, \mathcal{L}^s_{wu}(^{n-1}X))$.

In 1999, Aron et al. (see $[^2]$, Proposition 5) proved the following result.

Theorem 1 [²]. Let X be a Banach space and let n = 2, 3, ... Let C_n be a relatively compact subset of the space $\mathcal{K}(X, \mathcal{L}^s_{wu}(^{n-1}X))$. Then there exists a compact subset C of X^* such that for all $S \in C_n$ and all $x \in X$

$$|(Sx)(x,...,x)| \le \sup_{x^* \in C} |x^*(x)|^n$$

Theorem 1 together with its proof in $[^2]$ gives no information about the size of the set C corresponding to the size of C_n .

The purpose of this article is to prove the following quantitative strengthening of Theorem 1. We denote $|C| = \sup\{||x|| : x \in C\}$, where C is a bounded set in a Banach space.

Theorem 2. Let X be a Banach space and let n = 2, 3, ... Let C_n be a relatively compact subset of the space $\mathcal{K}(X, \mathcal{L}^s_{wu}(^{n-1}X))$. Then there exists a compact circled subset C of X^* with $|C| = \max\{|C_n|, 1\}$ such that for all $S \in C_n$ and all $x \in X$

$$|(Sx)(x,...,x)| \le \sup_{x^* \in C} |x^*(x)|^n.$$

We use a standard notation. A Banach space X will be regarded as a subspace of its bidual X^{**} under the canonical embedding. The closure of a set $A \subset X$ is denoted by \overline{A} . The linear span of A is denoted by span A and the circled hull by circA.

2. PROOF OF THEOREM 2

The proof of Theorem 2 will be based on a factorization result that easily follows from

Lemma 1. Let X and Y be Banach spaces. For every relatively compact subset C of $\mathcal{K}(X,Y)$, there exist a reflexive Banach space Z, a linear mapping Φ : span $C \to \mathcal{K}(X,Z)$, and a norm one operator $v \in \mathcal{K}(Z,Y)$ such that $S = v \circ \Phi(S)$ for all $S \in \text{span } C$. The mapping Φ restricted to C is a homeomorphism and satisfies

 $||S|| \le ||\Phi(S)|| \le \min\{|C|, |C|^{1/2}b^{1/2}||S||^{1/2}\},\$

 $S \in C$, where $b \approx 2\frac{1}{2}$ is an absolute constant.

Proof. Since $\overline{\operatorname{circ} C}$ is a compact subset of $\mathcal{K}(X, Y)$, by [³], Theorem 6, there exist a reflexive Banach space Z, a linear mapping Φ : span $C \to \mathcal{K}(X, Z)$, and a norm one operator $v \in \mathcal{K}(Z, Y)$ such that $S = v \circ \Phi(S)$, for all $S \in \operatorname{span} C$. Moreover, the mapping Φ restricted to circ C is a homeomorphism satisfying

$$||S|| \le ||\Phi(S)|| \le \min\left\{\frac{\mathrm{d}}{2}, \left(\frac{\mathrm{d}}{2}\right)^{1/2} b^{1/2} ||S||^{1/2}\right\},\$$

 $S \in \operatorname{circ} C$, where $d = \operatorname{diam} \operatorname{circ} C$.

Since for all $S \in C$

$$||S|| = \frac{1}{2}||2S|| = \frac{1}{2}||S - (-S)|| \le \frac{d}{2},$$

we get $|C| \leq d/2$. On the other hand, for all $S, T \in \text{circ } C$, we have $S = \lambda S_0$ and $T = \mu T_0$ for some $S_0, T_0 \in C$ and for some $\lambda, \mu \in \mathbb{K}$ with $|\lambda|, |\mu| \leq 1$. Hence

$$||S - T|| \le ||S|| + ||T|| = ||\lambda S_0|| + ||\mu T_0||$$

= $|\lambda|||S_0|| + |\mu|||T_0|| \le ||S_0|| + ||T_0|| \le |C| + |C|,$

 $S, T \in C$. Therefore $d/2 \le |C|$. Consequently, d/2 = |C|.

The proof of Theorem 2 follows the idea of the proof of Proposition 5 in $[^2]$.

Proof of Theorem 2. We proceed by induction on n = 2, 3, ... Let C_2 be a relatively compact subset of the space $\mathcal{K}(X, \mathcal{L}^s_{wu}(^1X)) = \mathcal{K}(X, X^*)$. By Lemma 1 there exist a Banach space Z, a linear mapping Φ : span $C_2 \to \mathcal{K}(X, Z)$, and a norm one operator $v \in \mathcal{K}(Z, X^*)$ such that $S = v \circ \Phi(S)$ for all $S \in \text{span } C_2$. Then for all $S \in C_2$ and all $x \in X$,

$$|(Sx)(x)| = |v(\Phi(S)x)(x)| = |(v^*x)(\Phi(S)x)|,$$

hence

$$|(Sx)(x)| \le ||v^*x|| ||\Phi(S)x||.$$

Put

$$C_{\Phi} = \overline{\{(\Phi(S))^*(z^*) : S \in C_2, z^* \in B_{Z^*}\}} \subset X^*.$$

Then C_{Φ} is circled. To prove that it is also compact, let us fix an arbitrary $\varepsilon > 0$. Let $\{\Phi(S_1), \ldots, \Phi(S_n)\}$, $S_k \in C_2$, be an ε -net in the relatively compact set $\{\Phi(S) : S \in C_2\}$. Since $\Phi(S_k)$ is a compact operator, $(\Phi(S_k))^*$ is also a compact operator and therefore $(\Phi(S_k))^*(B_{Z^*})$ is a relatively compact set. Since $\bigcup_{k=1}^n (\Phi(S_k))^*(B_{Z^*})$ is clearly a relatively compact ε -net in the set $\{(\Phi(S))^*(z^*) : S \in C_2, z^* \in B_{Z^*}\}$, this set is relatively compact. Hence, C_{Φ} is a compact set.

Moreover, we get

$$\|\Phi(S)x\| = \sup_{z^* \in B_{Z^*}} |z^*(\Phi(S)x)| = \sup_{z^* \in B_{Z^*}} |((\Phi(S))^*(z^*))(x)| \le \sup_{x^* \in C_{\Phi}} |x^*(x)|$$

for all $S \in C_2$ and all $x \in X$.

Denoting

$$C_v = \overline{v(B_Z)} \subset X^*,$$

we have that C_v is circled and compact, and

$$||v^*x|| = \sup_{z \in B_Z} |(v^*x)(z)| = \sup_{z \in B_Z} |(vz)(x)| \le \sup_{x^* \in C_v} |x^*(x)|$$

for all $x \in X$.

Finally, let $C = C_{\Phi} \cup C_v$. Then C is circled and compact, and

$$|(Sx)(x)| \le ||v^*x|| ||\Phi(S)x|| \le \sup_{x^* \in C_v} |x^*(x)| \sup_{x^* \in C_\Phi} |x^*(x)| \le \sup_{x^* \in C} |x^*(x)|^2$$

for all $S \in C_2$ and all $x \in X$.

By the definition of |C|,

$$|C| = \sup_{x^* \in C} ||x^*|| = \sup_{x^* \in C_{\Phi} \cup C_v} ||x^*|| = \max \{ \sup_{x^* \in C_{\Phi}} ||x^*||, \sup_{x^* \in C_v} ||x^*|| \}$$

= max{|C_{\Phi}|, |C_v|}.

Let us first estimate

$$|C_{\Phi}| = \sup_{x^* \in C_{\Phi}} \|x^*\| = \sup_{\substack{S \in C_2\\z^* \in B_{Z^*}}} \|(\Phi(S))^*(z^*)\| = \sup_{S \in C_2} \|(\Phi(S))^*\| = \sup_{S \in C_2} \|\Phi(S)\|.$$

Using the conclusion of Lemma 1, we have for all $S \in C_2$,

$$||S|| \le ||\Phi(S)|| \le \sup_{S \in C_2} ||\Phi(S)|| = |C_{\Phi}|$$

and

$$\|\Phi(S)\| \le |C_2|.$$

Hence

$$|C_2| \le |C_\Phi| \le |C_2|,$$

meaning that $|C_{\Phi}| = |C_2|$. Let us now compute

$$|C_v| = \sup_{x^* \in C_v} ||x^*|| = \sup_{z \in B_Z} ||vz|| = ||v|| = 1.$$

Consequently,

$$|C| = \max\{|C_{\Phi}|, |C_v|\} = \max\{|C_2|, 1\}.$$

Assume that the result is true for n-1, where $n \in \{3, 4, \ldots\}$. Let C_n be a relatively compact subset of the space $\mathcal{K}(X, \mathcal{L}^s_{wu}(^{n-1}X))$. By Lemma 1 there exist a reflexive Banach space Z, a linear mapping Φ : span $C_n \to \mathcal{K}(X, Z)$, and a norm

one operator $v \in \mathcal{K}(Z, \mathcal{L}_{wu}^s(^{n-1}X))$ such that $S = v \circ \Phi(S)$ for all $S \in \text{span } C_n$. Then for all $S \in C_n$ and for all $x \in X$, considering $(x, \ldots, x) \in (\mathcal{L}_{wu}^s(^{n-1}X))^*$ (note that if $A \in \mathcal{L}_{wu}^s(^{n-1}X)$, then $\langle (x, \ldots, x), A \rangle = A(x, \ldots, x)$),

$$|(Sx)(x,...,x)| = |v(\Phi(S)x)(x,...,x)| = |(v^*(x,...,x))(\Phi(S)x)|,$$

hence

$$|(Sx)(x,...,x)| \le ||v^*(x,...,x)|| ||\Phi(S)x||.$$

Put, as above,

$$C_{\Phi} = \overline{\{(\Phi(S))^*(z^*) : S \in C_n, z^* \in B_{Z^*}\}} \subset X^*.$$

Then C_{Φ} is circled and compact, and we get

$$\|\Phi(S)x\| = \sup_{z^* \in B_{Z^*}} |z^*(\Phi(S)x)| = \sup_{z^* \in B_{Z^*}} |((\Phi(S))^*(z^*))(x)| \le \sup_{x^* \in C_\Phi} |x^*(x)|$$

for all $S \in C_n$ and for all $x \in X$. Recall that $v(B_Z)$ is a relatively compact subset of $\mathcal{L}^s_{wu}(^{n-1}X)$. Hence

$$C_{n-1} := \{T_P : P \in \mathcal{P}_{wu}(^{n-1}X), A_P \in v(B_Z)\} \subset \mathcal{L}(X, \mathcal{L}^s(^{n-2}X))$$

is also relatively compact. According to [1], $C_{n-1} \subset \mathcal{K}(X, \mathcal{L}^s(^{n-2}X))$. Therefore, by the induction hypothesis, there is a circled and compact subset $C_v \subset X^*$ with $|C_v| = \max\{|C_{n-1}|, 1\}$ such that

$$|(T_P x)(x,...,x)| \le \sup_{x^* \in C_v} |x^*(x)|^{n-1}$$

for all $P \in \mathcal{P}_{wu}(^{n-1}X)$ with $A_P \in v(B_Z)$. Since $v(B_Z) \subset \mathcal{L}_{wu}^s(^{n-1}X)$, for all $z \in B_Z$ there exists $P \in \mathcal{P}_{wu}(^{n-1}X)$ such that $vz = A_P$. By definition, $A_P(x, x, \ldots, x) = (T_P x)(x, \ldots, x), x \in X$. Hence, for all $z \in B_Z$ and all $x \in X$,

$$|(vz)(x,...,x)| = |A_P(x,x,...,x)| = |(T_Px)(x,...,x)| \le \sup_{x^* \in C_v} |x^*(x)|^{n-1}.$$

Therefore

$$\|v^*(x,\ldots,x)\| = \sup_{z \in B_Z} |(v^*(x,\ldots,x))(z)|$$

=
$$\sup_{z \in B_Z} |(vz)(x,\ldots,x)| \le \sup_{x^* \in C_v} |x^*(x)|^{n-1}.$$

Finally, let $C = C_{\Phi} \cup C_v$. Then C is circled and compact, and

$$|(Sx)(x,...,x)| \le ||v^*(x,...,x)|| ||\Phi(S)x||$$

$$\le \sup_{x^* \in C_v} |x^*(x)|^{n-1} \sup_{x^* \in C_\Phi} |x^*(x)| \le \sup_{x^* \in C} |x^*(x)|^n$$

for all $S \in C_n$ and all $x \in X$.

20

To complete the proof, let us show that $|C| = \max \{ |C_n|, 1 \}$. Similarly to the case n = 2, we have

$$|C| = \sup_{x^* \in C} ||x^*|| = \sup_{x^* \in C_\Phi \cup C_v} ||x^*|| = \max \{ \sup_{x^* \in C_\Phi} ||x^*||, \sup_{x^* \in C_v} ||x^*|| \}$$
$$= \max \{ |C_\Phi|, |C_v| \}$$

and

$$|C_{\Phi}| = \sup_{x^* \in C_{\Phi}} \|x^*\| = \sup_{\substack{S \in C_n \\ z^* \in B_{Z^*}}} \|(\Phi(S))^*(z^*)\| = \sup_{S \in C_n} \|(\Phi(S))^*\| = \sup_{S \in C_n} \|\Phi(S)\|.$$

Using the conclusion of Lemma 1, we have for all $S \in C_n$,

$$||S|| \le ||\Phi(S)|| \le |C_{\Phi}|$$

and

$$\|\Phi(S)\| \le |C_n|.$$

Hence

$$|C_n| \le |C_\Phi| \le |C_n|,$$

meaning that $|C_{\Phi}| = |C_n|$. Let us show that $|C_v| = 1$. Recall that $|C_v| = \max\{|C_{n-1}|, 1\}$. Since

$$|C_{n-1}| = \sup_{T_P \in C_{n-1}} ||T_P|| = \sup_{A_P \in v(B_Z)} ||A_P|| \le \sup_{z \in B_Z} ||vz|| = ||v|| = 1,$$

we clearly have $|C_v| = 1$.

3. APPLICATION TO POLYNOMIALS

The next theorem is proved by Toma [4] (an alternative proof is given in [2]).

Theorem 3 [⁴]. Let X be a Banach space, let n = 2, 3, ..., and let $P \in \mathcal{P}(^nX)$. The polynomial $P \in \mathcal{P}_{wu}(^nX)$ if and only if there exists a compact subset C of X^* such that for all $x \in X$

$$P(x)| \le \sup_{x^* \in C} |x^*(x)|^n.$$

The following is a quantitative version of Theorem 3.

Corollary 1. Let X be a Banach space, let n = 2, 3, ..., and let $P \in \mathcal{P}(^nX)$. The following are equivalent:

(a) $P \in \mathcal{P}_{wu}(^nX)$,

(b) there exists a compact subset C of X^* such that for all $x \in X$

$$|P(x)| \le \sup_{x^* \in C} |x^*(x)|^n,$$

21

(c) there exists a compact circled subset C of X^* with

$$\max\{\|P\|, 1\} \le |C| \le \max\left\{\frac{n^n}{n!}\|P\|, 1\right\}$$

such that for all $x \in X$

$$|P(x)| \le \sup_{x^* \in C} |x^*(x)|^n.$$

Proof. (a) \Rightarrow (c). Let $P \in \mathcal{P}_{wu}(^nX)$, then $\{T_P\} \subset \mathcal{K}(X, \mathcal{L}^s_{wu}(^{n-1}X))$. Applying Theorem 2 to $C_n = \{T_P\}$, we get that there is a compact circled subset C of X^* with $|C| = \max\{||T_p||, 1\}$ such that for all $x \in X$

$$|P(x)| = |A_P(x, x, \dots, x)| = |(T_P x)(x, \dots, x)| \le \sup_{x^* \in C} |x^*(x)|^n.$$

Applying the polarization formula (see, for example, [5], Theorem 1.7), we have

$$||P|| \le ||T_P|| \le \frac{n^n}{n!} ||P||.$$

Hence $\max\{||P||, 1\} \le |C| \le \max\{\frac{n^n}{n!} ||P||, 1\}.$

 $(c) \Rightarrow (b)$. Obvious.

(b) \Rightarrow (a). Follows immediately from Theorem 3.

ACKNOWLEDGEMENTS

This article is a part of my PhD thesis, written under the guidance of Eve Oja at the University of Tartu. I gratefully acknowledge her valuable help. I thank referees for their suggestions and comments. This research was supported by the Estonian Science Foundation (grant No. 5704).

REFERENCES

- 1. Aron, R. M. and Prolla, J. B. Polynomial approximation of differentiable functions on Banach spaces. J. Reine Angew. Math., 1980, **313**, 195–216.
- Aron, R., Lindström, M., Ruess, W. M. and Ryan, R. Uniform factorization for compact sets of operators. *Proc. Amer. Math. Soc.*, 1999, **127**, 1119–1125.
- 3. Mikkor, K. and Oja, E. Uniform factorization for compact sets of weakly compact operators. *Studia Math.* (accepted).
- Toma, E. Aplicações holomorfas e polinômios τ-contínuos. Thesis, Univ. Federal do Rio de Janeiro, 1993.
- Dineen, S. Complex Analysis in Locally Convex Spaces. North-Holland Mathematics Studies, 57. Notas de Matematica, 83. North-Holland Publishing Co., Amsterdam-New York, 1981.

Banachi ruumi ühikkeral nõrgalt ühtlaselt pidevatest polünoomidest

Kristel Mikkor

On tõestatud Aroni-Lindströmi-Ruessi-Ryani [2] ja Toma [4] teoreemide kvantitatiivsed versioonid Banachi ruumi ühikkeral nõrgalt ühtlaselt pidevate polünoomide kohta. Tõestusmeetod tugineb kompaktsete operaatorite kompaktsete hulkade ühtlasele faktorisatsioonile.