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Abstract. The relationship between three state space realizability conditions for nonlinear
multi-input multi-output differential equations, formulated in terms of different mathematical
tools, is studied. Moreover, explicit formulae are provided for calculating the differentials of
the state coordinates which, in case the necessary and sufficient realizability conditions are
satisfied, can be integrated to obtain the state coordinates. The main differences in comparison
with the single-input single-output case are clarified.
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1. INTRODUCTION

The paper compares distinct realizability conditions and realization algorithms
in order to systematize the knowledge and to provide theexplicit formulae for
calculating the differentials of the state coordinates which, in case the necessary
and sufficient realizability conditions are satisfied, can be integrated to obtain
the state coordinates. Our aim is to extend the results of [1] to the multi-
input multi-output (MIMO) case. In the above paper three apparently distinct
(algebraic, geometric, and Lie brackets based) intrinsic necessary andsufficient
realizability conditions [2−5] for input-output differential equations are proved
to be equivalent. Moreover, it is shown that the sufficient algorithm-dependent
realizability conditions [6,7] are tightly related to the above intrinsic conditions
as the algorithm constructs the basis vectors for the algebraic condition. Finally,

A preliminary version of this paper was presented at the 16thIFAC World Congress, 2005,
Prague.

24



alternative explicit formulae for calculating the differentials of the state coordinates
are suggested. Since in [5] only single-input single-output (SISO) systems are
studied, we concentrate instead on paper [8] that gives algebraic conditions under
which the derivatives of the inputs can be eliminated in the generalized state
equations and can thus be viewed as realizability conditions. We also extend the
algorithms for calculating the state coordinates from [6,7] and explicit formula
from [1] for calculating the differentials of state coordinates to the MIMO case.
Note that generalization to the MIMO case, though technically involved, is
not difficult once the extended systemcorresponding to the set of input-output
equations,is properly defined(see Section 4), and the results carry over to the
MIMO case.

We stress that an explicit formula for calculating the basis ofHs+2 is valid
only under the assumption thatH1, . . . ,Hs+1 are completely integrable, though
this assumption was not implicitly mentioned in our previous paper [1].

Note that it is not our purpose to compare the results which study realization
in specificstate space form, e.g. bilinear [9], polynomial [10] or state affine [11,12]
realizations.

2. THE REALIZATION PROBLEM

Consider a nonlinear system described byp (i = 1, . . . , p) input-output
differential equations where the highest derivatives ofy appear linearly

y
(ni)
i = ϕi(yk, . . . , y

(nik)
k , uj , . . . , u

(sij)
j , k = 1, . . . , p, j = 1, . . . ,m). (1)

Assumption 1. System(1) is strictly proper, i.e. sij < ni, for i = 1, . . . , p,
j = 1, . . . ,m.

Assumption 2. System(1) is in a canonical form,which means thatni ≥ 1,
n1 ≤ n2 ≤ . . . ≤ np, nik < min(ni, nk), andn1 + n2 + . . .+ np = n is the order
of the system.

Assumption 2 implies that whenever (1) admits a Kalmanian realization, the
indicesni, associated with each outputyi, i = 1, . . . , p, are the observability
indices of any observable state space realization of ordern. The form (1) is an
extension of the echelon canonical matrix description, introduced in [13] for linear
systems. Note that every strictly proper system can be transformed into the above
form [14]. Defines := max sij and note that Assumption 2 yieldss < np

1.
A classical state space representation of the form

ẋ = F (x, u),
y = h(x)

(2)

1 For differences between the geometric conditions [3] and the commutativity conditions [4]
for the cases = np, see [4]
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is called a realization of (1) if the external behaviours of the two systems coincide,
where the behaviour of (1) or (2) is the set of all pairs(u, y) that satisfy (1) or
(2) (for some trajectoryx), respectively. We call system (2) observable if almost
everywhere

rank
∂(y, ẏ, . . . , y(n−1))

∂x
= n.

In dealing with the nonlinear realization problem, we are, like in [15], interested
in the generic realizability properties, i.e. in the properties that hold almost
everywhere, except on a set of measure zero. That is, we look at dimensions
(or ranks) over a field of functions, not overIR. Thus there is no argument either
about the points where to evaluate dimensions or about constant dimensionality
of distributions and codistributions. Involutivity of distributions and integrability
of codistributions are often characterized by conditions which require that specific
functions on system variables vanish. Since there are smooth functions that are
neither generically zero nor generically different from zero, the notionof generic
property does not make sense, in general, for systems defined by smoothfunctions.
The situation is different if we restrict our attention to systems defined by means of
analytic (or also meromorphic) functions, and this motivates our choice.

The realization problem studied in this paper is defined as follows. Given
Eqs (1), withϕi(·) analytic, find, if possible, the state coordinatesx ∈ IRn,

x = ψ(yi, . . . , y
(ni−1)
i , uj , . . . , u

(s−1)
j , i = 1, . . . , p, j = 1, . . . ,m) such that

in coordinatesx the system takes the form (2), withψ, F , andh analytic functions.
The solution of the realization problem in [2−4,8] is formulated in terms of the

extended state space system,

ż = f(z) +
m
∑

j=1

gjvj , (3)

associated with (1), with the inputsvj = u
(s+1)
j , the state

z = [y1, . . . , y
(n1−1)
1 , . . . , yp, . . . , y

(np−1)
p ,

u1, . . . , um, . . . , u
(s)
1 , . . . , u

(s)
m ]T ∈ IRn+m(s+1)

and the vector fieldsf(z) andgj defined respectively as

f(z) = [z2, . . . , zn1
, ϕ1(z), . . . , zn1+...+np−1+2, . . . , zn, ϕp(z),

zn+2, . . . , zn+s+1, 0, . . . , zn+(m−1)(s+1)+2, . . . , zn+m(s+1), 0]T
(4)

andgj = [0 . . . 0 1 0 . . . 0]T , where the(n+ms+ j)th element is the only nonzero
entry ofgj .

Assumption 3. In the extended system(3), the highest time derivatives of all inputs
equal tos = max sij even if in Eqs(1) the highest derivatives of the components
are different.
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In many papers on nonlinear control, system (3) is treated as the realization
of (1). The disadvantage of theextended state space realizationis that it uses the
(s+ 1)th derivative of controlu(s+1) = v as input. For linear systems it is possible
to find an extended state coordinate transformation such that the system description
in the new coordinates does not involve the explicit differentiation of the input.
Unfortunately, this is not always possible for nonlinear systems. Therefore, it is
important to characterize the input-output models (1) which do have an observable
state space representation (2) of ordern and to provide the algorithm to find the
state coordinates. In the next section we give a brief exposition of realizability
conditions. Note that controllability (accessibility) of the realization is guaranteed
by irreducibility of the set of input-output equations (1), see [5].

3. THE REALIZABILITY CONDITIONS

In this paper we work with meromorphic functions. Meromorphic functions
are defined as the elements of the quotient field of the ring of analytic functions.
The use of meromorphic functions is essential for carrying out division inthe
algorithms.

All computations in the following algorithms can be performed almost every-
where, i.e. everywhere except on the set of singularities which has measure
zero. Similarly, all conditions of Theorems 1–3 hold almost everywhere, orsaid
differently, hold generically. However, the realizations are only locally valid on an
open region around some generic point.

3.1. Algebraic realizability conditions

Applying the results of [8] to a realization problem, one has to start not from
the input-output differential equations (1), but from the generalized state equations

ż1 = z2,
...

żn1−1 = zn1
,

żn1
= ϕ1(z1, . . . , zn, u, u̇, . . . , u

(s)),
...

żn1+...+np−1+1 = zn1+...+np−1+2,
...

żn−1 = zn,

żn = ϕp(z1, . . . , zn, u, u̇, . . . , u
(s))

(5)

associated with Eqs (1). Equations (5) are, apart from a slight difference in notation,
the firstn equations of the extended state space description (3).
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In [8] the realization problem for MIMO nonlinear systems is studied using the
language of differential forms. Necessary and sufficient conditions are formulated
in terms of the integrability of certain subspaces of one-forms, classified according
to their relative degrees.

Let K denote the field of meromorphic functions in the variables{z, v(k),
k ≥ 0}, associated with the extended state space system (3). Over the fieldK one
can define a vector spaceE∗ := spanK{dϕ | ϕ ∈ K}, spanned by the differentials
of the elements ofK. Consider a one-formω ∈ E∗: ω =

∑

i αidϕi, αi, ϕi ∈ K.
Its derivativeω̇ is defined byω̇ =

∑

i α̇idϕi+αidϕ̇i whereż is defined by (3). The
relative degreer of a one-formω ∈ spanK{dz} is defined to be the least integer
such that therth derivative of one-formω(r) 6∈ spanK{dz}. If such an integer
does not exist, we setr = ∞. A decreasing sequence of subspaces{Hk} of E∗ is
defined in [16]:

H1 = spanK{dz},

Hk+1 = {ω ∈ Hk | ω̇ ∈ Hk}, k ≥ 1.
(6)

Note thatHk is the space of one-forms whose relative degree is greater than
or equal to k, and the subspacesHk are invariant under (extended) state
diffeomorphism [16]. The realizability conditions are formulated in terms of
integrability of the subspaces of one-forms.

Theorem 1 [8]. The input-output differential equations(1) are generically
realizable in the observable state space form(2) iff for 1 ≤ k ≤ s+2 the subspaces
Hk defined by(6) for the extended system(3) are integrable. The state coordinates
can be found by integrating the basis vectors ofHs+2.

3.2. Geometric realizability conditions

The realization problem in [2,3] is studied using the language of vector
fields. The increasing sequence of distributions{Sk} of E = spanK{∂/∂yi, . . . ,

∂/∂y
(ni−1)
i , ∂/∂uj , . . . , ∂/∂u

(s+1)
j , i = 1, . . . , p, j = 1, . . . ,m} is defined by2

S1 = spanK

{

∂

∂u
(s+1)
j

, j = 1, . . . ,m

}

,

Sk+1 = S̄k + [f, S̄k ∩ ker dy ∩ ker du], k ≥ 1,

(7)

whereS̄ denotes the involutive closure of the distributionS, and[f, S] denotes the
distribution spanned by all Lie brackets[f,X], with X a vector field belonging to
S andf defined by (4). The distributionS∗ = Ss+2 is the minimal conditionally
invariant distribution for the extended system (3). Using the specific structure of

2 Note that in [2] S1 = spanK

{

(∂/∂u
(s)
j )
}

.
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the extended state space system (3), van der Schaft [3] has proved that ifSk, for
k = 1, . . . , s+ 2, are all involutive, then

Sk ⊂ ker du ∩ ker dy, k = 1, . . . , s+ 1,

Ss+2 ∩ ker du ∩ ker dy = Ss+1,

dimSk = km, k = 1, . . . , s+ 2 globally.

(8)

The realizability conditions in [2] are formulated in terms of the involutivity of
the distributions.

Theorem 2 [3]. The input-output differential equations(1) are generically
realizable in the observable state space form(2) iff all the distributions
S1, . . . , Ss+2 defined by(7) for the extended system(3) are involutive.

3.3. Realizability conditions in terms
of commutativity of iterative Lie brackets

Delaleau and Respondek [4] also start from Eqs (5). The realizability conditions
in [4] are formulated in terms of the iterative Lie brackets of vector fields

f =

p
∑

i=1

(

ẏi
∂

∂yi
+ . . .+ ϕi(·)

∂

∂y
(ni−1)
i

)

+
m
∑

j=1

(

u̇j
∂

∂uj
+ . . .+ u

(s+1)
j

∂

∂u
(s)
j

)

andgj = ∂/∂u
(s)
j , j = 1, . . . ,m, defined by the extended system (3). Denote for

j = 1, . . . ,m

L0
f

∂

∂u
(s)
j

=
∂

∂u
(s)
j

,

Lk
f

∂

∂u
(s)
j

=

[

f, Lk−1
f

∂

∂u
(s)
j

]

, k ≥ 1.

Theorem 3 [4]. The input-output differential equations(1) are generically
realizable in the observable state space form(2) iff for 0 ≤ q, µ ≤ s, 1 ≤ j, l ≤ m

[

Lq
f

∂

∂u
(s)
j

, Lµ
f

∂

∂u
(s)
l

]

≡ 0. (9)

Note that, in order to lower the order of the input derivative in (5) by one,
condition (9) has to hold for0 ≤ q, µ ≤ 1, 1 ≤ j, l ≤ m. This condition is
satisfied only if∂2ϕi(·)/ (∂u

(s)
j )2 ≡ 0, or equivalently, if Eqs (1) are linear with

respect to the highest derivatives of the inputs. Unlike the SISO case, inthe MIMO
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case linearity with respect to the highest derivatives of controls is not sufficient for
lowering the input derivatives by one. The systemÿ = yu̇1 + ẏ2u̇2 serves as an
example. One can easily find that for this systems = 1 and

f = ẏ
∂

∂y
+
(

yu̇1 + ẏ2u̇2

) ∂

∂ẏ
+ u̇1

∂

∂u1
+ u̇2

∂

∂u2
+ ü1

∂

∂u̇1
+ ü2

∂

∂u̇2
.

Therefore,

Lf
∂

∂u̇1
=

[

f,
∂

∂u̇1

]

= −
∂

∂u1
− y

∂

∂ẏ
,

Lf
∂

∂u̇2
=

[

f,
∂

∂u̇2

]

= −
∂

∂u2
− ẏ2 ∂

∂ẏ
,

and
[

Lf
∂

∂u̇1
, Lf

∂

∂u̇2

]

= 2yẏ
∂

∂ẏ
6≡ 0.

So, condition (9) is not satisfied forq = µ = 1, though the input-output
equation is linear both with respect tou̇1 andu̇2.

Theorems 1 and 2 are valid generically, i.e. they may fail at certain singular
points. It may happen that at a certain singular point the conditions of Theorems 1
and 2 are not sufficient for realizability. We will demonstrate this with the following
simple example.

Example 1. Consider the nonrealizable system̈y = yu̇2. For this system we get
from (4)

f = ẏ
∂

∂y
+ yu̇2 ∂

∂ẏ
+ u̇

∂

∂u
,

and so

Lf
∂

∂u̇
= −

∂

∂u
− 2yu̇

∂

∂ẏ
.

The distribution

S3 = spanK

{

∂

∂u
+ 2yu̇

∂

∂ẏ
,
∂

∂u̇
,
∂

∂ü

}

is noninvolutive except at the pointy = 0 since

[

Lf
∂

∂u̇
,
∂

∂u̇

]

= 2y
∂

∂ẏ
.

At the pointy = 0 the distributionS3 is involutive, but obviously there exists
no realization around the pointy = 0.

30



4. MAIN RESULTS: THE EQUIVALENCE OF FOUR
REALIZATION METHODS

The main purpose of this section is to prove the equivalence of the three
different realizability conditions recalled in the previous section. Moreover, we will
provide explicit formulae for calculating the basis vectors of the subspaces of one-
formsHk, for k = 3, . . . , s+ 2 and extend the algorithm-based solutions [6] to the
MIMO case. Finally, we will demonstrate that the MIMO case can be understood
as the method to compute the basis vectors forHk, k = 3, . . . , s+ 2.

4.1. Relationship of the sequences{Hk} and {Sk}

This subsection establishes the relation between the sequences{Hk} and{Sk}.

Lemma 1. Assume that the distributionSk, for k = 1, . . . , s+ 1, is involutive, and
the subspace of one-formsHk annihilates the distributionSk. Then the subspace
of one-formsHk+1 annihilates the distributionSk+1, that isHk+1(Sk+1) ≡ 0 for
k = 1, 2, . . . , s+ 1.

This technical Lemma, proved in [1] for the SISO case, can be easily extended
to the MIMO case and therefore we omit the proof. Note that the condition of
involutivity of Sk is essential to the proof of Lemma 1. If we drop this assumption,
Hk+1 does not necessarily annihilateSk+1.

Lemma 2. If for the extended system(3), Hk is completely integrable, then
dimHk+1 = n+ (s+ 1 − k)m globally, for k = 1, . . . , s+ 1.

Proof. The proof is by induction. According to definition (6),

H3 =

spanK

{

dyi, . . . ,dy
(ni−2)
i , ω

[2]
i,ni
,duj , . . . ,du

(s−2)
j , i = 1, . . . , p, j = 1, . . . ,m

}

,

where fori = 1, . . . , p

ω
[2]
i,ni

= dy
(ni−1)
i −

m
∑

j=1

∂ϕi

∂u
(s)
j

du
(s−1)
j .

Consequently,H3 is spanned byn+ (s− 1)m linearly independent one-forms and
its dimension isn+ (s− 1)m. Let us assume now that

Hk = spanK

{

dyi, . . . ,dy
(ni−k+1)
i , ω

[k−1]
i,ni−k+3, . . . , ω

[k−1]
i,ni

,duj , . . . ,du
(s−k+1)
j

}

is integrable and its dimension isn+ (s− k + 2)m, where

ω
[k−1]
i,li

= dy
(li−1)
i − Φ

[k−1]
i,li

, ∀li = ni − k + 3, . . . , ni, (10)
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andΦ
[k−1]
i,li

is a linear combination of differentialsdu(s−k+2)
k , . . . ,du

(s−1)
j , chosen

so thatω̇[k−1]
i,li

∈ Hk−1.
To construct the codistributionHk+1 according to (6), at first we have to remove

the differentialsdu(s−k+1)
j fromHk because their time derivatives do not belong to

Hk. So, the dimension of the codistribution reduces bym.
Note that also the time derivatives of one-formsdy

(ni−k+1)
i = ω

[k−1]
i,ni−k+2,

ω
[k−1]
i,ni−k+3, . . . , ω

[k−1]
i,ni

may containdu(s−k+2)
j :

ω̇
[k−1]
i,Ki

= Ω
[k−1]
i,Ki

+
s
∑

j=1

Ω̂
[k−1]
i,Ki,j

du
(s−k+2)
j , Ki = ni − k + 2, . . . , ni,

where the one-formsΩ[k−1]
i,Ki

belong toHk. Next we have to modify the one-forms

ω
[k−1]
i,Ki

so that their time derivatives would also belong toHk. For that we replace
them by the one-forms

ω
[k]
i,Ki

= ω
[k−1]
i,Ki

−
s
∑

j=1

Ω
[k−1]
i,Ki,j

du
(s−k+1)
j ,

which have, according to formula (10), again the form

ω
[k]
i,Ki

= dy
(Ki−1)
i − Φ

[k]
i,Ki

, ∀Ki = ni − k + 2, . . . , ni, (11)

where Φ
[k]
i,Ki

as one-forms are the linear combinations of the differentials

du
(s−k+1)
i , . . . ,du

(s−1)
j . By their structure, the one-forms (11) are linearly

independent and so

Hk+1 = spanK

{

dyi, . . . ,dy
(ni−k)
i , ω

[k]
i,ni−k+2, . . . , ω

[k]
i,ni
,duj , . . . ,du

(s−k)
j ,

i = 1, . . . , p, j = 1, . . . ,m} ,

is spanned byn + (s − k + 1)m linearly independent one-forms. Consequently,
dimHk = n+ (s− k + 1)m.

Theorem 4. The subspacesHk, k = 3, . . . , s + 2, defined by(6) for the extended
system(3), are integrable iff the distributionsSk, k = 3, . . . , s + 2, defined by(7)
for the extended system(3), are involutive.

Proof. Note that from (8) and from Lemma 2, ifSk, k = 3, . . . , s + 1,
are involutive, or alternatively,Hk, k = 3, . . . , s + 1, are integrable, then the
dimensions ofSk andHk ∀k = 1, . . . , s + 2 are globally defined. From the
involutivity of a constant dimensional distribution follows complete integrability
of its maximal annihilator and vice versa. Therefore, to prove the theorem,
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we have to show thatHk+1 for k = 2, . . . , s + 1 is the maximal annihilator
of Sk+1, i.e. Hk+1(Sk+1) ≡ 0 and thatcodim Hk+1 = dim Sk+1, given
that eitherSk is involutive or Hk is completely integrable. The codimension
of Hk in Ê∗ := spanK{dyi, . . . ,dy

(ni−1)
i ,duj , . . . ,du

(s+1)
j , i = 1, . . . , p,

j = 1, . . . ,m} ⊂ E∗ is defined to be the dimension of̂E∗/Hk. Consider

the subspaceH2 = spanK{dyi, . . . ,dy
(ni−1)
i , i = 1, . . . , p,duj , . . . ,du

(s−1)
j ,

j = 1, . . . ,m}, which is obviously a maximal annihilator ofS2 =

spanK{∂/∂u
(s)
j , ∂/∂u

(s+1)
j }, i.e. H2(S2) ≡ 0, and moreover,codimH2 =

dim S2. The proof is now by induction onk. We will show that if Sk

is involutive, thenHk+1 is a maximal annihilator ofSk+1. From Lemma 1,
Hk+1(Sk+1) ≡ 0. Next, since by Lemma 2dim Hk+1 = dim Hk − m, or
equivalently,codim Hk+1 = codim Hk + m, the proof is completed by the fact
that from (8)dim Sk+1 = dim Sk +m.

Note thatH1 is integrable by the definition and integrability ofH2 follows from
the special structure of the extended system (3). In a similar mannerS1 is involutive
by the definition and involutivity ofS2 comes from the specific structure of (3).

Note that Theorem 4 is valid only under Assumption 3. Otherwise, (8) is not
valid sinceSk 6⊂ ker du∩ ker dy for somek values,1 ≤ k ≤ s+ 1, and therefore,
starting fromk + 1, Hk+1 is not necessarily anymore a maximal annihilator of
Sk+1, even ifHk is a maximal annihilator ofSk. Really,Hk(Sk) ≡ 0. Since
Hk+1 ⊂ Hk,

Hk+1(Sk) ≡ 0 (12)

as well. Next, taking the time derivative of (12) (or equivalently, Lie derivativeLf

with respect to vector fieldf ) yields

Ḣk+1(Sk) + Hk+1([f, Sk]) ≡ 0. (13)

SinceḢk+1 ⊂ Hk,
Ḣk+1(Sk) ≡ 0. (14)

From (13) and (14),Hk+1([f, Sk]) ≡ 0 and since[Sk ∩ ker du ∩ ker dy] ⊂ Sk,

Hk+1(Sk + [f, Sk]) ≡ Hk+1(Sk+1) ≡ 0,

which means thatHk+1 is the annihilator ofSk+1 = S̄k +[f, S̄k∩ker du∩ker dy],
but not necessarily the maximal annihilator.

We demonstrate this in the example below.

Example 2.Consider a third-order input-output equation with two inputs

y(3) = yu̇1 + ü2. (15)

The total time derivative operator of (15) has the form

f = ẏ
∂

∂y
+ÿ

∂

∂ẏ
+(yu̇1 + ü2)

∂

∂ÿ
+u̇1

∂

∂u1
+ü1

∂

∂u̇1
+u̇2

∂

∂u2
+ü2

∂

∂u̇2
+

...
u2

∂

∂ü2
.
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If we do not take in the extended state equations the highest derivatives
of all inputs equal tos = max sij = 2 and work with the coordinates
{y, ẏ, ÿ, u1, u2, u̇1, u̇2, ü2}, then the first two distributions are

S1 = spanK

{

∂

∂ü1
,

∂

∂u
(3)
2

}

, S2 = spanK

{

∂

∂u̇1
,
∂

∂ü2
,
∂

∂ü1
,

∂

∂u
(3)
2

}

.

To compute the distributionS3, we find the following Lie brackets
[

f,
∂

∂u̇1

]

= −y
∂

∂ÿ
−

∂

∂u1
,

[

f,
∂

∂ü2

]

= −
∂

∂ÿ
−

∂

∂u̇2
,

and according to (7), the distribution

S3 = spanK

{

y
∂

∂ÿ
+

∂

∂u1
,
∂

∂u̇1
,
∂

∂ÿ
+

∂

∂u̇2
,
∂

∂ü1
,
∂

∂ü2
,

∂

∂u
(3)
2

}

.

Using again formula (7) to computeS4, we must take into account that

y
∂

∂ÿ
+

∂

∂u1
6∈ ker du,

and therefore its Lie derivative with respect tof does not, according to (7), belong
to S4. Next, calculating the Lie brackets

[

f,−
∂

∂ÿ
−

∂

∂u̇2

]

=
∂

∂ẏ
+

∂

∂u2
⊂ ker dy ∩ ker du,

we obtain

S4 = spanK

{

∂

∂u1
+ y

∂

∂ÿ
,
∂

∂u̇1
,
∂

∂u2
+

∂

∂ẏ
,
∂

∂u̇2
+

∂

∂ÿ
,
∂

∂ü2
,

∂

∂u
(3)
2

}

.

This distribution is obviously integrable and, according to Theorem 2, Eq. (15) is
realizable.

The maximal annihilatorsS⊥

k of distributionsSk are

S⊥
2 = spanK {dy, dẏ, dÿ, du1,du2,du̇2} ,
S⊥

3 = spanK {dy, dẏ, dÿ − ydu1 − du̇2,du2} ,
S⊥

4 = spanK {dy, dẏ − du2,dÿ − ydu1 − du̇2} .
(16)

According to (6),

H2 = spanK {dy, dẏ, dÿ, du1,du2,du̇2} ,
H3 = spanK {dy, dẏ, dÿ − ydu1 − du̇2,du2} ,
H4 = spanK

{

dy, ẏdẏ + ydÿ − y2du1 − ẏdu2 − ydu̇2

}

.
(17)
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We see that as far as the corresponding distributionsSk belong toker du ∩ ker dy,
i.e. for k = 2, 3, S⊥

k = Hk is valid and the codistributionsHk are the maximal
annihilators ofSk. It is obvious from (16) and (17) thatH4 is not a maximal
annihilator ofS4 since dimensions of the subspacesS⊥

4 andH4 are not equal. Note
that in the calculation ofS4 we had to drop the vector field∂/∂ÿ + ∂/∂u̇2 in S3

belonging toker du, and therefore

S4 6= S3 + [f, S3] = spanK

{

ẏ
∂

∂ÿ
−

∂

∂ẏ
,
∂

∂ẏ
+

∂

∂u2
, y

∂

∂ÿ
+

∂

∂u1
,
∂

∂ÿ

−
∂

∂u̇2
,
∂

∂u̇1
,
∂

∂ü2
,
∂

∂ü1
,

∂

∂u
(3)
2

}

.

Note thatH4 is the maximal annihilator ofS3 + [f, S3]. Simple calculation shows
thatH4 is even not an integrable codistribution.

This example also demonstrates that without Assumption 3 the distributions
Hk are not necessarily integrable even if the system of input-output equations
is realizable. This means thatwithout Assumption the geometric realizability
conditions and the conditions in terms of the Lie brackets are valid in the MIMO
case, but the algebraic conditions are not.

4.2. The relationship between the geometric conditions and conditions
in terms of iterative Lie brackets

Theorem 5. Involutivity of the distributionsS1, . . . , Sk, for k = 3, . . . , s + 2 is
equivalent to condition(9) for 0 ≤ q, r ≤ k − 2, 1 ≤ j, l ≤ m.

This Theorem, proved in [1] for the SISO case, can again be easily extended to
the MIMO case under Assumption 3. We omit the proof.

4.3. Algorithms for calculating the basis vectors ofHs+2

In principle, Hs+2 can be found using either definition (6) or the algorithm
given in [16]. However, neither of them take into account the specific
simple structure of the extended system (3). If we take this structure into
account, and assume integrability ofHk, k = 1, . . . , s+ 1, the following
recursive explicit algorithm can be obtained to compute the basis of
Hk+2 = spanK{ω

[k+1]
1,1 , . . . , ω

[k+1]
1,n1

, . . . ,ω
[k+1]
p,1 , . . . ,ω

[k+1]
p,np ,du, . . . ,du

(s−k−1)}
from definition (6) and Theorem 4:

ω
[0]
i,li

= ω
[1]
i,li

:= dy
(li−1)
li

,

ω
[k+1]
i,li

= ω
[k]
i,li

− (−1)k

m
∑

j=1

〈

ω
[k]
i,li
, Lk

f

∂

∂u
(s)
j

〉

du
(s−k)
j ,

i = 1, . . . , p, li = 1, . . . , ni, k = 1, . . . , s.

(18)
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At the kth step of the algorithm the one-formω[k]
i,li

, obtained at the previous

step, is orthogonalized with respect to the vector fieldsLk
f (∂/∂u

(s)
j ), j = 1, . . . ,m.

From direct computation we get thatω[k+1]
i,li

annihilate, or equivalently, the subspace

of one-formsHk+2 annihilates all the vector fieldsLl
f

(

∂/∂u
(s)
j

)

, l = 0, . . . , k,

j = 1, . . . ,m.
Alternatively, instead of (18), another formula can be derived to compute

ω
[k+1]
i,li

, k = 1, . . . , s, in terms of Lie derivatives of one-forms, and not in terms
of Lie derivatives of vector fields as in (18):

ω
[k+1]
i,li

= ω
[k]
i,li

−
m
∑

j=1

〈

Lk
fω

[k]
i,li
,

∂

∂u
(s)
j

〉

du
(s−k)
j . (19)

The advantage of using algorithms (18) or (19) lies in the fact that they can
be directly and easily implemented in the computer algebra program Mathematica.
However, integration of the subspaceHs+2 to obtain the state coordinates can be
difficult.

Formulae (18) and (19) are equivalent. The proof is a straightforwardextension
of the proof in the SISO case ([1]) and is therefore omitted.

4.4. Algorithmic realizability conditions

We extend to the MIMO case the constructive algorithm (up to the solution of
a set of partial differential equations) for finding, if possible, the state coordinates
from the input-output differential equations given in [6,7] for the SISO case.

Lemma 3. The M-dimensional distribution∆ = spanK{X1, . . . , XM} on an
N-dimensional manifold(M < N) hasN − dim ∆̄ functionally independent3

solutions(invariants), where∆̄ denotes the involutive closure of∆.

Proof. Denote the solutions of the distribution∆ by Iα. Then for alli, α

LXi
Iα ≡ 0. (20)

Moreover, since

L[Xi,Xj ]Iα = LXi
(LXj

Iα) − LXj
(LXi

Iα)

and because of (20), we have for alli, α

L[Xi,Xj ]Iα ≡ 0.

3 Functional independence of solutions means that none of them can be expressed in terms
of the others.
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So,Iα is also a solution of the distribution∆∪[∆,∆]. Proceeding analogously, one
can demonstrate thatIα are the solutions of the involutive closure of∆. Therefore,
the codistribution∆∗ = spanK{dIα} is a maximal annihilator of the involutive
closure of∆, and so

dim ∆∗ = N−dim ∆̄.

Define ȳ = (y1, . . . , y
(n1−1)
1 , . . . , yp, . . . , y

(np−1)
p ) and ū = (u1, . . . , u

(s−1)
1 ,

. . . , um, . . . , u
(s−1)
m ). The starting point for the algorithm is not Eqs (1), but the

equations where the highest derivatives of controls,u
(s)
j , appear already linearly:

y
(ni)
i =

m
∑

j=1

αij(ȳ, ū)u
(s)
j + βi(ȳ, ū), i = 1, . . . , p. (21)

The goal of the first step of the algorithm is to find the new generalized state
variablesz̃1, . . . , z̃n such that˙̃z does not depend onu(s). Note that only then1th,
the (n1 + n2)th, . . . and thenth equations of (5) depend onu(s). So, one can
definez̃i = zi, for i = 1, . . . , n1 − 1, n1 + 1, . . . , n1 + n2 − 1, . . . , n1 + . . . +
np−1 + 1, . . . , n− 1 and find fork = n1, n1 + n2, . . . , n

z̃k = rk(ȳ, ū) (22)

such that

˙̃zk =

p
∑

i=1

(

ẏi
∂rk
∂yi

+ . . .+ y
(ni−1)
i

∂rk

∂y
(ni−2)
i

+

[

m
∑

j=1

αij(·)u
(s)
j + βi(·)

]

∂rk

∂y
(ni−1)
i

)

+
m
∑

j=1

(

u̇j
∂rk
∂uj

+ . . .+ u
(s)
j

∂rk

∂u
(s−1)
j

)

does not depend onu(s), which means thatrk(·) has to be a solution of the set of
m partial differential equations in variables̄y andū:

〈

dr,−Lf
∂

∂u
(s)
j

〉

=

p
∑

i=1

αij(·)
∂r

∂y
(ni−1)
i

+
∂r

∂u
(s−1)
j

= 0. (23)

Equation (23) is solvable if (9) is satisfied for0 ≤ q, r ≤ 1. Then there
exist, because of Lemma 3 at least locally,n + (s − 1)m independent solutions

r1 = y1, . . . , rn1−1 = y
(n1−2)
1 , . . . , rn1+...+np−1+1 = yp, . . . , rn−1 = y

(np−1)
p ,

rn+j = uj , . . . , rn+m(s−1)+j = u
(s−2)
j and p solutionsrn1

, rn1+n2
, . . . , rn of

the form (22), whose Jacobian with respect toyi, . . . , y
(ni−1)
i , uj , . . . , u

(s−1)
j is
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nonsingular and that satisfy (23). The generalized state equations in the new
coordinates become

˙̃z1 = z̃2,
...

˙̃zn1−2 = ˙̃zn1−1,
˙̃zn1−1 = ϕ̃11(z̃1, . . . , z̃n, u, u̇ . . . , u

(s−1)),
˙̃zn1

= ϕ̃12(z̃1, . . . , z̃n, u, u̇, . . . , u
(s−1)),

...
˙̃zn1+...+np−1+1 = z̃n1+...+np−1+2,

...
˙̃zn−2 = z̃n−1,
˙̃zn−1 = ϕ̃p1(z̃1, . . . , z̃n, u, u̇, . . . , u

(s−1)),
˙̃zn = ϕ̃p2(z̃1, . . . , z̃n, u, u̇, . . . , u

(s−1)).

(24)

At the next step, if̃ϕij(z, u, . . . , u
(s−1)),, i = 1, . . . , p j = 1, 2, are linear in the

highest time derivative of controlsu(s−1)
j , then the same procedure can be repeated

for them to produce a new generalized state space representation withu(s−2) as the
highest time derivative of the input.

Next, we will demonstrate that the algorithm described above constructs exact
basis vectors for the subspaces of one-formsH3, whenever possible. Note that
the basis vectorsH1 are always exact by definition and the basis vectors forH2

are exact by the specific structure of (3). For input-output differential equations
of the form (21), Eq. (23) is solvable iffH3 is integrable, and the solutions
rk(·), k = n1, n1 + n2, . . . , n, of the form (22) define the new state coordinates
z̃k = rk(ȳ, ū). We will demonstrate thatdrk = dz̃k ∈ H3. According to

(18),H3 = spanK{dyi, . . . , dy
(ni−2)
i , ω

[2]
i,ni
, i = 1, . . . , p,du, . . . ,du(s−2)}, where

for (21)

ω
[2]
i,ni

= dy
(ni−1)
i +

m
∑

j=1

〈

dy
(ni−1)
i , Lf

∂

∂u
(s)
j

〉

du
(s−1)
j

= dy
(ni−1)
i − αij(·)du

(s−1)
j .

(25)

Note that the one-formω[2]
i,ni

annihilatesLf∂/∂u
(s)
j . So, if the one-formω[2]

i,ni
is

exact, the solution of (23) can be obtained by integratingω
[2]
i,ni

. Though the one-
form (25) is not necessarily exact, from the integrability ofH3 it is possible to find
the integrating factors that make the solution exact and equal todri with ri being
the solution of (23).

In a similar manner it can be shown that the subsequent steps of the algorithm
construct exact basis vectors forH4, . . . ,Hs+2, whenever possible.
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5. EXAMPLES

Example 3.Consider the special class of the SISO differential equation [17]

y(n) + b1y
(n−1) + . . .+ bn−1y

(1) + bny = a0u+ . . .+ asu
(s)

+N(u, y, y(1), . . . , y(n−s)),
(26)

linear with respect to all input time derivatives. The realization of Eq. (26)in [17]
was completed via a nonrecursive method which defines the state variables as
follows:

zi = y(i−1) + b1y
(i−2) + . . .+ bi−2y

(1) − an−i+2u
(1)

−asu
(s−n+i−1) + [bi−1y − an−i+1u], i = n− s+ 1, . . . , n,

zi = y(i−1) + b1y
(i−2) + . . .+ bi−1y, i = 2, . . . , n− s,

x1 = y.

(27)

Comparing (27) with the recursive algorithmic method described in Subsection4.3,
one can see that, although the state variables (27) differ from those defined in the
present paper (18), they also satisfy Eq. (23) for a SISO case,

as
∂r

∂y(n−1)
+

∂r

∂u(s−1)
= 0

and also the equations defined in the next steps of the algorithm. This shows that
the method of [17] can be understood as a special case of the algorithmic method of
Section 4, applied to a restricted special input-output differential equation.

Example 4.We will demonstrate, using the example below, the equivalence of the
considered methods. Consider the system

ÿ1 = y2u1 + u̇2, ÿ2 = y1u̇1, (28)

where

f = ẏ1
∂

∂y1
+ (y2u1 + u̇2)

∂

∂ẏ1
+ ẏ2

∂

∂y2
+ y1u̇1

∂

∂ẏ2

+u̇1
∂

∂u1
+ u̇2

∂

∂u2
+ ü1

∂

∂u̇1
+ ü2

∂

∂u̇2
.

In order to calculate the sequence of subspaces{Hk} by (18), we first find

Lf
∂

∂u̇1
= −

∂

∂u1
− y1

∂

∂ẏ2
, Lf

∂

∂u̇2
= −

∂

∂u2
−

∂

∂ẏ1
,
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which also yields that Lie brackets based conditions (9) are satisfied forq = µ = 1.
So,

ω
[2]
11 = dy1, ω

[2]
21 = dy2, ω

[2]
12 = dẏ1 − du2, ω

[2]
22 = dẏ2 − y1du1

and
H3 = spanK{dy1,dẏ1 − du2,dy2,dẏ2 − y1du1},

which is obviously completely integrable.
Next calculate according to (7),

S3 = spanK

{

∂

∂u1
+ y1

∂

∂ẏ2
,
∂

∂u̇1
,

∂

∂u
(2)
1

,
∂

∂u2
+

∂

∂ẏ1
,
∂

∂u̇2
,

∂

∂u
(2)
2

}

,

which is involutive, and the maximal annihilator ofH3. We can find the coordinates

x1 = y1, x2 = ẏ1 − u2, x3 = y2, x4 = ẏ2 − u1y1 (29)

of the integrable classical state space realization by integrating the integrablebasis
vectors ofH3, that is after changingω[2]

22 by ω[2]
22 − u1ω

[2]
11 . So, the state equations

are
ẋ1 = x2 + u2,
ẋ2 = x3u1,
ẋ3 = x4 + u1x1,
ẋ4 = −u1(x2 + u2).

The state coordinatesr2 andr4 can be found from (23) as the solutions of the set
of two partial differential equations

∂r

∂u1
+ y1

∂r

∂ẏ2
= 0,

∂r

∂u2
+

∂r

∂ẏ1
= 0,

whereasr1 = y1 andr3 = y2. It is easy to see thatx2 andx4 in (29) provide the
solution.
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Mittelineaarsete juhtimissüsteemide
realiseeritavustingimuste ekvivalentsus

Ülle Kotta ja Tanel Mullari

On võrreldud erinevaid tarvilikke ja piisavaid tingimusi mitme sisendi ning
väljundiga kõrgemat järku diferentsiaalvõrrandite mittelineaarse süsteemi reali-
seeritavuseks esimest järku diferentsiaalvõrrandite süsteemina ja tõestatudreali-
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seeritavustingimuste ekvivalentsus. Vaatluse all on esiteks geomeetrilised tin-
gimused, milleks on võrrandisüsteemile vastavas laiendatud olekuruumis nende
võrrandite põhjal defineeritud teatud jaotuste involutiivsus. Teiseks on käsitle-
tud algebralisi tingimusi, mis seisnevad nimetatud võrranditele vastavate kaas-
jaotuste integreeritavuses. Kolmas tingimus on esitatud laiendatud olekuruumis
defineeritud vektorväljade Lie sulgude kommutatiivsuse kaudu. Uued muutujad
laiendatud olekuruumis, millele üleminek võimaldab kõrgemat järku diferent-
siaalvõrrandite süsteemi realisatsiooni, on ühtlasi esimeses tingimuses sisalduvate
jaotuste lahendid, teises tingimuses sisalduvate kaasjaotuste esimesed integraalid
ja kolmandas tingimuses sisalduvate vektorväljade invariandid. Ühtlasi on antud
valemid selliste diferentsiaalvormide arvutamiseks, mille integreerimine annab
realisatsiooni võimaldavad olekumuutujad.
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