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Abstract. The relationship between three state space realizabibibditions for nonlinear
multi-input multi-output differential equations, fornaied in terms of different mathematical
tools, is studied. Moreover, explicit formulae are prodder calculating the differentials of
the state coordinates which, in case the necessary andienffiealizability conditions are
satisfied, can be integrated to obtain the state coording@kesmain differences in comparison
with the single-input single-output case are clarified.
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1. INTRODUCTION

The paper compares distinct realizability conditions and realization algorithms
in order to systematize the knowledge and to provide ekglicit formulae for
calculating the differentials of the state coordinates which, in case thesaeges
and sufficient realizability conditions are satisfied, can be integrated tanobta
the state coordinates. Our aim is to extend the resultstjofo[ the multi-
input multi-output (MIMO) case. In the above paper three apparently distin
(algebraic, geometric, and Lie brackets based) intrinsic necessargudficient
realizability conditions 7°] for input-output differential equations are proved
to be equivalent. Moreover, it is shown that the sufficient algorithm-oleget
realizability conditions {7] are tightly related to the above intrinsic conditions
as the algorithm constructs the basis vectors for the algebraic conditioallyFin

A preliminary version of this paper was presented at the [F&E World Congress, 2005,
Prague.
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alternative explicit formulae for calculating the differentials of the statedinates
are suggested. Since if] [only single-input single-output (SISO) systems are
studied, we concentrate instead on pafgttat gives algebraic conditions under
which the derivatives of the inputs can be eliminated in the generalized state
equations and can thus be viewed as realizability conditions. We also exgnd th
algorithms for calculating the state coordinates frdim][and explicit formula
from [1] for calculating the differentials of state coordinates to the MIMO case.
Note that generalization to the MIMO case, though technically involved, is
not difficult once the extended systararresponding to the set of input-output
equations,s properly definedsee Section 4), and the results carry over to the
MIMO case.

We stress that an explicit formula for calculating the basig{of , is valid
only under the assumption thaf;, ..., Hs11 are completely integrable, though
this assumption was not implicitly mentioned in our previous pafer [

Note that it is not our purpose to compare the results which study realization
in specificstate space form, e.g. bilined,[polynomial [1] or state affine [1:12]
realizations.

2. THE REALIZATION PROBLEM

Consider a nonlinear system described by: = 1,...,p) input-output
differential equations where the highest derivativeg appear linearly

y§ni) = (pi(yk,...,y,(fn““),uj,...,ug-sij), k=1,...,p,j=1,...,m). (1)

Assumption 1. System(1) is strictly proper i.e. s;; < ng, fori = 1,...,p,
j=1,....m.

Assumption 2. System(1) is in a canonical form,which means that; > 1,
n1 < ng < ... <ny, n < min(n;,ng), andn; +ng + ... +n, = nis the order
of the system.

Assumption 2 implies that whenever (1) admits a Kalmanian realization, the
indicesn;, associated with each outpyt, i = 1,...,p, are the observability
indices of any observable state space realization of atdefhe form (1) is an
extension of the echelon canonical matrix description, introducetfjifidr linear
systems. Note that every strictly proper system can be transformed intbdiie a
form [4]. Defines := max s;; and note that Assumption 2 yields< n,.

A classical state space representation of the form

t = F(z,u),
y = h) @)

1 For differences between the geometric conditichsiid the commutativity condition&][
for the cases = n,, see f]

25



is called a realization of (1) if the external behaviours of the two systemsidein
where the behaviour of (1) or (2) is the set of all pditsy) that satisfy (1) or
(2) (for some trajectory), respectively. We call system (2) observable if almost
everywhere

y (n—1)
ranka(y,y,-..,y ) .

ox

In dealing with the nonlinear realization problem, we are, like'#j, jnterested
in the generic realizability properties, i.e. in the properties that hold almost
everywhere, except on a set of measure zero. That is, we look ahsions
(or ranks) over a field of functions, not ové#t. Thus there is no argument either
about the points where to evaluate dimensions or about constant dimditgiona
of distributions and codistributions. Involutivity of distributions and integdigb
of codistributions are often characterized by conditions which requitesgieific
functions on system variables vanish. Since there are smooth functidnsréha
neither generically zero nor generically different from zero, the natiogeneric
property does not make sense, in general, for systems defined by dionocttbns.
The situation is different if we restrict our attention to systems defined by snefan
analytic (or also meromorphic) functions, and this motivates our choice.

The realization problem studied in this paper is defined as follows. Given
Egs (1), withy;(-) analytic, find, if possible, the state coordinatese IR",
— I/J(yi,...,yz-(ni_l),uj,...,uf_l), i=1,....,p, j=1,...,m) such that
in coordinates: the system takes the form (2), with F', andh analytic functions.

The solution of the realization problem itrf®] is formulated in terms of the
extended state space system,

2= f(2)+ Zgjvj, 3)
j=1

associated with (1), with the inputs = uf“), the state
-1 -1
< = [ylv"‘vyy“ )7"'7ypa"'7ygnp )a

ULy o ve s Uy e e - ,ugs), - ,uﬁ,‘i)]T e RHmistl)
and the vector fieldg¢(z) andg; defined respectively as
f(Z) = [225'“7Zn15()01(2)5~"aZn1+...+np_1+25'"aznvgop(z)a T (4)
Zn42y -5 Bnts+1, 07 <o g (m—1)(s4+1)425 - - s Fndm(s+1)> O]

andg; = [0...010...0]7, where thgn +ms + j)th element is the only nonzero
entry ofg,;.

Assumption 3. In the extended syste8), the highest time derivatives of all inputs
equal tos = max s;; even if in EqY1) the highest derivatives of the components
are different.
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In many papers on nonlinear control, system (3) is treated as the realization
of (1). The disadvantage of trextended state space realizatiisnthat it uses the
(s + 1)th derivative of controk(**1) = v as input. For linear systems it is possible
to find an extended state coordinate transformation such that the systeniptites
in the new coordinates does not involve the explicit differentiation of thetinpu
Unfortunately, this is not always possible for nonlinear systems. Toexeit is
important to characterize the input-output models (1) which do have anvalbée
state space representation (2) of ordesind to provide the algorithm to find the
state coordinates. In the next section we give a brief exposition of rbdiiya
conditions. Note that controllability (accessibility) of the realization is guasghte
by irreducibility of the set of input-output equations (1), sgle [

3. THE REALIZABILITY CONDITIONS

In this paper we work with meromorphic functions. Meromorphic functions
are defined as the elements of the quotient field of the ring of analytic fusction
The use of meromorphic functions is essential for carrying out divisiothén
algorithms.

All computations in the following algorithms can be performed almost every-
where, i.e. everywhere except on the set of singularities which hasuneeas
zero. Similarly, all conditions of Theorems 1-3 hold almost everywhersaiat
differently, hold generically. However, the realizations are only locallidvan an
open region around some generic point.

3.1. Algebraic realizability conditions

Applying the results of§] to a realization problem, one has to start not from
the input-output differential equations (1), but from the generalized sguations

Z"l = Z9,
2“1—1 == any
Zny = gol(zl,...,zn,u,u,...,u(s)),
)
“niteAnp-1+l = Znadnpo142
Zn—1 = Zny
R . s
2y = gop(zl,...,zn,u,u,...,u())

associated with Egs (1). Equations (5) are, apart from a slight differim notation,
the firstn equations of the extended state space description (3).
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In [®] the realization problem for MIMO nonlinear systems is studied using the
language of differential forms. Necessary and sufficient conditiom$oamulated
in terms of the integrability of certain subspaces of one-forms, classifeddiog
to their relative degrees.

Let K denote the field of meromorphic functions in the variabjesv(®),

k > 0}, associated with the extended state space system (3). Over thk fueld
can define a vector spaéé := span,-{dy | ¢ € K}, spanned by the differentials
of the elements oK. Consider a one-form € £*: w = ), ady;, o, € K.
Its derivativew is defined by = ). d;dy; +a;d¢; wherez is defined by (3). The
relative degree of a one-formw € span,{dz} is defined to be the least integer
such that theth derivative of one-formu(") ¢ span,{dz}. If such an integer
does not exist, we set= co. A decreasing sequence of subspafks } of £ is
defined in 9]

H1 = spany{dz},

Hir1 ={weHp|weH}, k>1.
Note that™; is the space of one-forms whose relative degree is greater than
or equal tok, and the subspace®(, are invariant under (extended) state

diffeomorphism f6]. The realizability conditions are formulated in terms of
integrability of the subspaces of one-forms.

(6)

Theorem 1 [8]. The input-output differential equationd) are generically
realizable in the observable state space f@giff for 1 < k£ < s+ 2 the subspaces
‘H;. defined by(6) for the extended systefB) are integrable. The state coordinates
can be found by integrating the basis vectorgff, -.

3.2. Geometric realizability conditions

The realization problem in2f] is studied using the language of vector
fields. The increasing sequence of distributigsg } of £ = span,{9/dvi,. ..,

/09", 0/0u;, ..., 0/0ul" ) i=1,...,p,j=1,...,m} is defined b

)

0 .
S = spanK{W, j—l,...,m},

J

(7
Spi1 = Sp+[f, Sk Nnkerdy Nkerdu], k> 1,

whereS denotes the involutive closure of the distributi§pand[f, S] denotes the
distribution spanned by all Lie brackdtg X, with X a vector field belonging to
S and f defined by (4). The distributiof* = S5 is the minimal conditionally
invariant distribution for the extended system (3). Using the specifictaneiof

2 Note thatin f] 51 = spanyc { (9/0u{”) }.
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the extended state space system (3), van der Schafag proved that ifS;,, for
k=1,...,s+ 2, are all involutive, then

Sp C kerduNkerdy, k=1,...,s+1,
Ss+2 Nkerdu Nkerdy = Ss41, (8)
dimSy =km, k=1,...,s+ 2 globally.

The realizability conditions ir?] are formulated in terms of the involutivity of
the distributions.

Theorem 2 [3]. The input-output differential equationd) are generically
realizable in the observable state space fof@) iff all the distributions
S1, ..., Ss1o defined by(7) for the extended systeB) are involutive.

3.3. Realizability conditions in terms
of commutativity of iterative Lie brackets

Delaleau and Responde} flso start from Egs (5). The realizability conditions
in [%] are formulated in terms of the iterative Lie brackets of vector fields

P m
_ .0 ' 0 .0 w0
f_;<y18_y+"'+%(')m>+2(“J%+“'+“j )

i J 8u§-5)

andg; = 3/8u§-8), j =1,...,m, defined by the extended system (3). Denote for
j=1....m

n? - 9 :

f@ugs) 8u§s)

L’}i() = (A5 a() k> 1
8ujs 8ujs

Theorem 3 [%]. The input-output differential equationd) are generically
realizable in the observable state space f@@yifffor0 < ¢, u <s,1 < 5,01 <m

0 0
Li—— Lh——| =0. 9
f@ugs) faul(s)]
Note that, in order to lower the order of the input derivative in (5) by one,
condition (9) has to hold fob < ¢, p < 1,1 < 4,1 < m. This condition is
satisfied only if9p;(-)/ (8u§s))2 = 0, or equivalently, if Egs (1) are linear with
respect to the highest derivatives of the inputs. Unlike the SISO cade MIMO
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case linearity with respect to the highest derivatives of controls is fiidient for
lowering the input derivatives by one. The systém= yi, + iy Serves as an
example. One can easily find that for this system 1 and

f:y‘—+(yu1+yzu2)£+u1 + Uy — —l—ihi—i-uQ
dy oy " our " Pous Mo T Pouy
Therefore,
L, 9 o )__9 9
Tow, ~ 70w |~ ow Yoy
0 0 0 0
Li— = |f 2| =2 22
T By [f ’ auz} duy 7 0y
and
0 0
L L =2
[ URTTR I ] yy i()

So, condition (9) is not satisfied far = p = 1, though the input-output
eqguation is linear both with respectdg and,.

Theorems 1 and 2 are valid generically, i.e. they may fail at certain singular
points. It may happen that at a certain singular point the conditions ofréheol
and 2 are not sufficient for realizability. We will demonstrate this with the fathgw
simple example.

Example 1. Consider the nonrealizable systém= yu2. For this system we get
from (4)

.0 .9 )
f—ya—y+yu 8—y+u8—,
and so
o__9 5.9
T ou ou Y oy
The distribution
Sa = span 3—%2 ug 2 2
3 TSP B, T Yy B ai

is noninvolutive except at the poigt= 0 since

g 0 0

At the pointy = 0 the distributionSs is involutive, but obviously there exists
no realization around the poigt= 0
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4. MAIN RESULTS: THE EQUIVALENCE OF FOUR
REALIZATION METHODS

The main purpose of this section is to prove the equivalence of the three
different realizability conditions recalled in the previous section. Moreave will
provide explicit formulae for calculating the basis vectors of the subspafaene-
formsH;, fork = 3, ..., s + 2 and extend the algorithm-based solutiotjg¢ the
MIMO case. Finally, we will demonstrate that the MIMO case can be undmisto
as the method to compute the basis vectorgdfprk = 3,...,s + 2.

4.1. Relationship of the sequence$H;} and {Si}

This subsection establishes the relation between the sequigrgesind{ S }.

Lemma 1. Assume that the distributia$y,, for k = 1,...,s+ 1, is involutive and
the subspace of one-forrig, annihilates the distributiors;,. Then the subspace
of one-formsHy 1 annihilates the distributiorby 1, that isHy11(Skg+1) = 0 for
k=1,2,...,s+ 1.

This technical Lemma, proved iA][for the SISO case, can be easily extended
to the MIMO case and therefore we omit the proof. Note that the condition of
involutivity of Sy, is essential to the proof of Lemma 1. If we drop this assumption,
Hy+1 does not necessarily annihila$g, ;.

Lemma 2. If for the extended systei8), H; is completely integrablethen
dimHi1 =n+ (s+1—k)maglobally, fork=1,...,s+ 1.

Proof. The proof is by induction. According to definition (6),
Hs =
span {dyi,..., v ,wivni,duj,...,du‘gsfm, 1=1,...,p, = 1,...,m} ,

wherefori =1,...,p

m

2 _ 4 (n-1) 0p;i . (s-1)

Wi, = dy; Z —8u(8) duj .

J=1 =%

ConsequentlyH3 is spanned by, + (s — 1)m linearly independent one-forms and
its dimension is: + (s — 1)m. Let us assume now that

Hj. = spany {dyi, ey dyzgn"_kﬂ),wgcn_iﬂkw, . ,wz[fcn_il], duy, . .. ,dug-s_kﬂ)}
is integrable and its dimensionis+ (s — k + 2)m, where
Wl — gyl Uy — iy — k43, (10)

Lyb4 ? i,
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—k+2)

and<I>[ s a linear combination ofdlﬁerentlaﬂsu( , ..,dug.s_l), chosen

SO thatw[k Ue Hi—1.
To construct the codistributiok; according to (6), at first we have to remove

the differentialslu'* ¥V from H. because their time derivatives do not belong to
Hi.. So, the dimension of the codistribution reduces/y
Note that also the time derivatives of one—formhgzg”"*k“) = W 1]k+2,

(k1] [k 1} (s—k+2). i

Wi k3 may contalrdu

l[k:Kl] Q[k 1] +ZQZ[kKZ17]]d k+2), Ki=ni—k+2,....m

where the one-formﬁ[k_l] belong toH;. Next we have to modify the one-forms

[kKl] so that their time derivatives would also belongH@. For that we replace

them by the one-forms

k k 1 (s—k+1
Z[I]( = [ ] ZQZK“] )’

which have, according to formula (10), again the form

Wz[k (K;—1)

bo=ay Y el VK = k2, (11)

k3

where @Ek}{ as one-forms are the linear combinations of the differentials

dugs_k“), s duf‘”. By their structure, the one-forms (11) are linearly
independent and so
i—k k k —k
Hit1 = spang {dyi, ce dygn ),wz[’ii_k+2, e 7wz[,r]zi’duj’ e du§-S ),

i=1,...,p, 7=1,...,m},

is spanned by: + (s — k + 1)m linearly independent one-forms. Consequently,
dmHr=n+(s—k+1)m

Theorem 4. The subspaceKy, k = 3, ..., s+ 2, defined by6) for the extended
system(3), are integrable iff the distributionsy, k = 3, ..., s + 2, defined by(7)
for the extended systefB), are involutive.

Proof. Note that from (8) and from Lemma 2, i, £ = 3,...,s + 1,

are involutive, or alternativelyH,, £k = 3,...,s + 1, are integrable, then the
dimensions ofS, and H, Vk = 1,...,s + 2 are globally defined. From the
involutivity of a constant dimensional distribution follows complete integrability
of its maximal annihilator and vice versa. Therefore, to prove the theorem,
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we have to show that{;,, for & = 2,...,s + 1 is the maximal annihilator

of Sk+l1 i.e. Hk+l(5k+1) = 0 and thatcodim Hk+1 = dim Sk—i—h given
that eitherSy is involutive or H; is completely integrable. The codimension
of H; in & = span,c{dyl-,...,dyi(m_l),duj,...,du§-s+1), i = 1,...,p,

j = 1,...,m} c &*is defined to be the dimension & /H,. Consider

the subspacé{y = spang{dy;,..., dyz(nifl),i = 1,...,p,duy,..., dug-sfl),
j = 1,...,m}, which is obviously a maximal annihilator ob; =
span,c{a/augs),a/au§8+1>}, i.e. H2(S2) = 0, and moreovercodimH, =
dim Se. The proof is now by induction ork. We will show that if Sy
is involutive, thenH;,; is a maximal annihilator of S;,,. From Lemma 1,
Hi+1(Skr1) =0. Next, since by Lemma 2im Hyy; = dim Hi — m, or
equivalently,codim Hy1 = codim Hj + m, the proof is completed by the fact
that from (8)dim Si1 = dim Sy + m.

Note thatH; is integrable by the definition and integrability’&f, follows from
the special structure of the extended system (3). In a similar ma&hnginvolutive
by the definition and involutivity o6, comes from the specific structure of (3)J

Note that Theorem 4 is valid only under Assumption 3. Otherwise, (8) is not
valid sinceSy, ¢ ker du Nker dy for somek values,1 < k < s+ 1, and therefore,
starting fromk + 1, Hy.1 IS not necessarily anymore a maximal annihilator of
Sk+1, even if Hy is a maximal annihilator of. Really, H;(S;) = 0. Since
Hyp1 C Hy,

Hi1(Sk) =0 (12)

as well. Next, taking the time derivative of (12) (or equivalently, Lie caixe L
with respect to vector field) yields

His1(Sk) + Hir1(Lf, Sk]) = 0. (13)

SincerH C Hg, _
Hi+1(Sk) = 0. (14)

From (13) and (14)H1([f, Sk]) = 0 and sincdSi N ker du N ker dy] C Sy,
Hi41(Sk + [f, Skl) = Hi+1(Sk41) =0,

which means thak{;, . ; is the annihilator oy, 1 = Sy, +[f, Sk Nker duNker dy],
but not necessarily the maximal annihilator.
We demonstrate this in the example below.

Example 2. Consider a third-order input-output equation with two inputs
Yy = yin + . (15)
The total time derivative operator of (15) has the form

F= 5 D (i i) 2 i O iy O g g iy O
Yoy ey T T s T e T By T oy T 2oy ? By
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If we do not take in the extended state equations the highest derivatives
of all inputs equal tos = maxs;; = 2 and work with the coordinates
{y, 9, J,u1, ua, U1, U, iz }, then the first two distributions are

S —spaned L 2 g an ]9 0 9 0
PP B g, [0 77 TP By iy D 9,0 [
To compute the distributiofs, we find the following Lie brackets
0 0 0 0 0 0
[f’a_uj __ya_y_a_ul’ [f’(?—uz} = T 4a- " 4.
and according to (7), the distribution
6 o d @ 9909 9 99
PR 05 T 0wy 0in’ 05 D’ iy Bl P [

Using again formula (7) to computg, we must take into account that

0 0
— 4+~ 4k
Y i + Juy ¢ ker du,

and therefore its Lie derivative with respectftaoes not, according to (7), belong
to S4. Next, calculating the Lie brackets

0 0 0 0
[f, 35 8112} a5 + 9y C ker dy N ker du,
we obtain

S —spaned 2 4,0 0 90 0 9 9 0 0
4= PR By T Y05 9y Bus | 0y Din 0§’ itz 9 |

This distribution is obviously integrable and, according to Theorem 2, Ex).i¢
realizable.
The maximal annihilators; of distributionsS), are

Si = spang {dy, dy, dij, duy, dug, dis},
Sy = spang {dy,dy, dj — yduy — dig, dug}, (16)
St = spang {dy,dy — dug,dj — ydus — dia} .

According to (6),

Ho = spang {dy,dy,dy,du, dug, dis},
Hs = spang {dy,dy,dj — ydu; — die, dus}, a7)
Hy = spang {dy,dy + ydj — y*dus — gdug — ydia | .
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We see that as far as the corresponding distributianiselong toker du N ker dy,
i.e. fork = 2,3, S{ = M, is valid and the codistribution&;, are the maximal
annihilators ofSy. It is obvious from (16) and (17) that, is not a maximal
annihilator ofS, since dimensions of the subspa&gsandH, are not equal. Note
that in the calculation of4 we had to drop the vector field/0i + 9/0us in Ss
belonging toker du, and therefore

o _069, 06 0, 06 08
8 9y 0y  ouy’ oy " ouy’ 8§

aaaaa}

Sy # S3+[f, 53] = spang {y

Dy’ Oy’ Oty Oty gy, ®)

Note thatH, is the maximal annihilator of; + [f, S3]. Simple calculation shows
that’H, is even not an integrable codistribution.

This example also demonstrates that without Assumption 3 the distributions
‘H,. are not necessarily integrable even if the system of input-output egsation
is realizable. This means thatithout Assumptionthe geometric realizability
conditions and the conditions in terms of the Lie brackets are valid in the MIMO
case, but the algebraic conditions are not.

4.2. The relationship between the geometric conditions and conditi@n
in terms of iterative Lie brackets

Theorem 5. Involutivity of the distributionsSy, ..., Sy, for k = 3,...,s+ 2 is
equivalent to conditiof9) for0 < ¢, r <k —2, 1 <j, I < m.

This Theorem, proved ir'] for the SISO case, can again be easily extended to
the MIMO case under Assumption 3. We omit the proof.

4.3. Algorithms for calculating the basis vectors ofH .o

In principle, Hs+2 can be found using either definition (6) or the algorithm
given in [*6]. However, neither of them take into account the specific
simple structure of the extended system (3). If we take this structure into

account, and assume integrability 6{x, k=1,...,s+ 1, the following
recursive explicit algorithm can be obtained to compute the basis of
Hiro = span,c{w[k+1],..., wyf:l”,...,w][)kH],...,wI[,k:pl],du ,du(s—F=1)1
from definition (6) and Theorem 4:

Wz[?l]i _ [1] — dy ( )

k+1 [k % k (s—k)

wz[,li 1 _ [] kZ< 1[117 a )>de : (18)
j=1 uj
i = 1,...,p, L=1,....,n, k=1,... 5.
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At the kth step of the algorithm the one—forwﬂ"’]i, obtained at the previous
step, is orthogonalized with respect to the vector fiﬂ@@?/aug.s)), j=1,...,m.
From direct computation we get th#“lj” annihilate, or equivalently, the subspace
of one-formsH;» annihilates all the vector fieldslf (8/8u§5)), Il =0,...,k

j=1...,m.
Alternatively, instead of (18), another formula can be derived to compute

wl[kljl], k =1,...,s, in terms of Lie derivatives of one-forms, and not in terms
of Lie derivatives of vector fields as in (18):
et _ N~ g H 9 g
J=1 J

The advantage of using algorithms (18) or (19) lies in the fact that they can
be directly and easily implemented in the computer algebra program Mathematica.
However, integration of the subspakg ;» to obtain the state coordinates can be
difficult.

Formulae (18) and (19) are equivalent. The proof is a straightforesgehsion
of the proof in the SISO case'{] and is therefore omitted.

4.4, Algorithmic realizability conditions

We extend to the MIMO case the constructive algorithm (up to the solution of
a set of partial differential equations) for finding, if possible, the statedinates
from the input-output differential equations given #] for the SISO case.

Lemma 3. The M-dimensional distributiod = span{X1y,...,Xa} on an
N-dimensional manifold}/ < N) has N — dim A functionally independeft
solutions(invariantg, whereA denotes the involutive closure Af.

Proof. Denote the solutions of the distributidaby I,,. Then for alli, «
Lx,In=0. (20)
Moreover, since
Lix, x;) 1o = Lx,(Lx, 1) — Lx,;(Lx,Io)
and because of (20), we have for all

L[Xi,Xj]Ia =0.

8 Functional independence of solutions means that none of taa be expressed in terms
of the others.
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So,1, is also a solution of the distributich U[A, A]. Proceeding analogously, one
can demonstrate thd}, are the solutions of the involutive closureAf Therefore,
the codistributionA* = span,{dI,} is a maximal annihilator of the involutive
closure ofA, and so

dim A* = N—dim A. ]
Defines = (yr.....o{" ..oyt Y) andis = (ur.. )

ey Uy - .,u,(f;”). The starting point for the algorithm is not Eqs (1), but the

equations where the highest derivatives of contmﬁ?,, appear already linearly:

Za” T s)—i—ﬂz( w), i=1,...,p. (21)
The goal of the first step of the algorithm is to find the new generalized state
variables?i, . .., %, such that: does not depend om®). Note that only the:;th,
the (n; 4+ no)th, ...and thenth equations of (5) depend aif®). So, one can
definez; = z;, fori =1,....ny — 1,ni+1,...,n1 +no—1,...,n1 + ...+
np—1+1,...,n—1andfind fork = ni,n; +ng,...,n
Zp = (g, a) (22)
such that
p
- . Org (ni—1) Org 3) org
Z = Ui +.Fy — aii(ws” + Bi() —
; ( 0y; ay! (ni—2) Z J 8y§nl 1)

(. Ok (s) Org
+Z (“J oty 8u(s—1))

J

does not depend om*), which means that,(-) has to be a solution of the set of
m partial differential equations in variablgsandu:

or
<dr, > Zaw (n,—l T =0 (23)

Yi J

Equation (23) is solvable if (9) is satisfied for < ¢, » < 1. Then there
exist, because of Lemma 3 at least locally+ (s — 1)m independent solutions

_ _ ,(m-2) _ _ ,(np—1)

n = Y, -y Tni—1 = Y1 y oo Tnito4np_1+1 = Ypy oo Tn—1 = Yp )
92 .

Trtj = Wjyre ooy Ppgm(s—1)4j = ugs ) and p SO|utI0nS7’n1,Tm+n2,...,Tn of

the form (22), whose Jacobian with respectyto. . .,yf”l ),uj, .. 7u§371) is
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nonsingular and that satisfy (23). The generalized state equations inethe n
coordinates become

21 = 22)
2n1—2 = 2711—17
P _ ~ ~ ~ . _1
anfl = @11(21,...,Zn,u,u...,u(s )),
P _ ~ ~ ~ . _1
Zny, = aplg(zl,...,zn,u,u,...,u(s ) ,
(24)
fnitetnp14+l = Zngtodnpo142
Zn—Q = Zn—la
P _ ~ ~ ~ . _1
Zn—1 = cppl(zl,...,zn,u,u,...,u(s )),
X ~ ~ ~ . 1
Zn = (ppg(zl,...,zn,u,u,...,u(s ).

Atthe nextstep, it5;; (2, u,...,u*"1) i=1,...,pj = 1,2, arelinearin the
highest time derivative of contro{sﬁ.sfl), then the same procedure can be repeated

for them to produce a new generalized state space representatiai Wwithas the
highest time derivative of the input.

Next, we will demonstrate that the algorithm described above construats exa
basis vectors for the subspaces of one-fofifs3s whenever possible. Note that
the basis vectorg{, are always exact by definition and the basis vectorsHer
are exact by the specific structure of (3). For input-output differeetjaations
of the form (21), Eqg. (23) is solvable ift{3 is integrable, and the solutions
rk(), k = ni,n1 + na,...,n, of the form (22) define the new state coordinates
Zr = rg(y,u). We will demonstrate thaflr, = dz; € Hs. According to
(18),Hs = spany{dy;, ..., dygni_z),w?}wi =1,...,p,du,...,dut*=2}, where
for (21) ’

2 i) N~/ g 1) ;O (1)
wh = dy, +Z<dyi ,Lf—(s)>duj

ul (25)

2]
2Uz
exact, the solution of (23) can be obtained by integradzir%i. Though the one-
form (25) is not necessarily exact, from the integrabilit)?-cy it is possible to find
the integrating factors that make the solution exact and equal;twith r; being
the solution of (23).

In a similar manner it can be shown that the subsequent steps of the algorithm
construct exact basis vectors iy, . . . , Hs12, whenever possible.

Note that the one-formu annihilatest8/8u§.S). So, if the one-formul[i]” is
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5. EXAMPLES
Example 3. Consider the special class of the SISO differential equafifn [
g™+ oy by + by = agu + . .. + agul®

+ N(u, y7 y(l)’ D y(n_S))?
(26)

linear with respect to all input time derivatives. The realization of Eq. {@6}']
was completed via a nonrecursive method which defines the state variables a
follows:

zio= Yy 4 by 4 b oy —ay i ou®

_asu(s—n+i—1) + [bifly - anfiJrlu]a it=n-—-s+1,...,n, (27)
z o= YU D by 4 by, i=2,...,n—s,
rr = y.

Comparing (27) with the recursive algorithmic method described in Subsec8on
one can see that, although the state variables (27) differ from thosed &fithe
present paper (18), they also satisfy Eq. (23) for a SISO case,

or or
s Dy (n—1) + Jul—1

=0

and also the equations defined in the next steps of the algorithm. This shaiws th
the method of{’] can be understood as a special case of the algorithmic method of
Section 4, applied to a restricted special input-output differential equation

Example 4. We will demonstrate, using the example below, the equivalence of the
considered methods. Consider the system

U1 = you1 + U2, Yo = Y11, (28)

where

.0 0
fzyl—8 + (your + U2) = + Yo=— + Y11 =——
Y1

o Oy 072

—I—ui—i-ui—i-u 0 + 1 0
Your " Pouy | ‘o | oug

In order to calculate the sequence of subspé&éés; by (18), we first find

0 0 0 0 0 0

Y = [— =
L R R L R S D T
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which also yields that Lie brackets based conditions (9) are satisfigdfqr = 1.
So,

W = dyr, Wl = dys, Wl = dyy — dug, w2 = dgo — yiduy

and
H3 = span{dy1,dj1 — dug, dya, dge — y1dus },

which is obviously completely integrable.
Next calculate according to (7),

_+_ R

S3 = span i—i— 0 9 9 ’ - .
3= spang § 5 ylaw’aul’aug?)’am O’ 0t gy P |

which is involutive, and the maximal annihilatoraf. We can find the coordinates
Ty =Y, Tp =Y — U2, T3 =Y2, T4= Y2 — UIY] (29)

of the integrable classical state space realization by integrating the intebeside

vectors ofH3, that is after changin@%} by wg - ulwﬁl. So, the state equations
are

T1 = X9+ ug,

Ty = x3U1,

T3 = T4+ uir,

T4 = —u (1‘2 + UQ).

The state coordinates andr, can be found from (23) as the solutions of the set
of two partial differential equations

or or or or
Duy +y1

=0
ou ’

A - 07 a + a.
0y Juz O
whereas; = y; andrg = y». Itis easy to see that, andx4 in (29) provide the
solution.
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Mittelineaarsete juhtimissisteemide
realiseeritavustingimuste ekvivalentsus
Ulle Kotta ja Tanel Mullari

On vorreldud erinevaid tarvilikke ja piisavaid tingimusi mitme sisendi ning

valjundiga kdrgemat jarku diferentsiaalvrrandite mittelineaarse sisteetivi re
seeritavuseks esimest jarku diferentsiaalvdrrandite stisteemina ja tOasialiud
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seeritavustingimuste ekvivalentsus. Vaatluse all on esiteks geomeetrilised tin-
gimused, milleks on vdrrandististeemile vastavas laiendatud olekuruumis nende
vOrrandite p&hjal defineeritud teatud jaotuste involutiivsus. Teiseks eoitldka

tud algebralisi tingimusi, mis seisnevad nimetatud v@rranditele vastavate kaas-
jaotuste integreeritavuses. Kolmas tingimus on esitatud laiendatud olekuruumis
defineeritud vektorvéljade Lie sulgude kommutatiivsuse kaudu. Uued mdutuja
laiendatud olekuruumis, millele Gleminek vdimaldab kdrgemat jarku diferent-
siaalvdrrandite siisteemi realisatsiooni, on Uhtlasi esimeses tingimuses\sisaldu
jaotuste lahendid, teises tingimuses sisalduvate kaasjaotuste esimesedlidtegraa
ja kolmandas tingimuses sisalduvate vektorvéljade invariandid. Uhtlasi od antu
valemid selliste diferentsiaalvormide arvutamiseks, mille integreerimine annab
realisatsiooni vdimaldavad olekumuutujad.
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