On a class of Lorentzian para-Sasakian manifolds

Cengizhan Murathan ${ }^{\text {a }}$, Ahmet Yıldiz ${ }^{\text {b }}$, Kadri Arslan ${ }^{\text {a }}$, and Uday Chand De ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Mathematics, Uludağ University, 16059 Bursa, Turkey; cengiz@uludag.edu.tr, arslan@uludag.edu.tr
${ }^{\mathrm{b}}$ Department of Mathematics, Dumlupınar University, Kütahya, Turkey; ahmetyildiz@dumlupinar.edu.tr
${ }^{c}$ Department of Mathematics, Kalyani University, Kalyani, India; uc_de@yahoo.com
Received 23 March 2006

Abstract

We classify Lorentzian para-Sasakian manifolds which satisfy $P \cdot C=0, Z \cdot C=$ $L_{C} Q(g, C), P \cdot Z-Z \cdot P=0$, and $P \cdot Z+Z \cdot P=0$, where P is the v-Weyl projective tensor, Z is the concircular tensor, and C is the Weyl conformal curvature tensor. Key words: contact metric manifold, Lorentzian para-Sasakian manifold, Sasakian manifold, v-Weyl projective tensor, concircular tensor.

1. INTRODUCTION

Matsumoto [${ }^{1}$] introduced the notion of Lorentzian para-Sasakian ($L P$-Sasakian for short) manifold. Mihai and Rosca defined the same notion independently in [$\left.{ }^{2}\right]$. This type of manifold is also discussed in $\left[{ }^{3,4}\right]$.

Let M be an n-dimensional Riemannian manifold of class C^{∞}. A v-projective symmetry is a projectable vector field X with the property in which every diffeomorphism φ of its one-parametric group is a projective map between leaves. In the theory of the projective transformations of connections the Weyl projective tensor plays an important role.

Recently, the authors of $\left.{ }^{5}\right]$ studied the contact metric manifold M^{n} satisfying the curvature conditions $Z(\xi, X) \cdot R=0$ and $R(\xi, X) \cdot Z=0$, where Z is the concircular tensor of M^{n} defined by

$$
\begin{equation*}
Z(X, Y) W=R(X, Y) W-\frac{\tau}{n(n-1)} R_{0}(X, Y) W, \tag{1}
\end{equation*}
$$

where

$$
R_{0}(X, Y) W=g(Y, W) X-g(X, W) Y
$$

R and τ are the Riemannian-Christoffel curvature tensor and the scalar curvature of M^{n}, respectively. They observed immediately from the form of the concircular curvature tensor that Riemannian manifolds with a vanishing concircular curvature tensor are of constant curvature. Thus one can think of the concircular curvature tensor as a measure of the failure of a Riemannian manifold to be of constant curvature.

In the theory of the projective transformations of connections the Weyl projective tensor plays an important role. The v-Weyl projective tensor P in a Riemannian manifold $\left(M^{n}, g\right)$ is defined by $\left[{ }^{6}\right]$

$$
\begin{equation*}
P(X, Y) W=R(X, Y) W-\frac{1}{n-1} R_{1}(X, Y) W \tag{2}
\end{equation*}
$$

where

$$
R_{1}(X, Y) W=S(Y, W) X-S(X, W) Y
$$

with S being the Ricci tensor of M.
In the present study we give a classification of the $L P$-Sasakian manifold M^{n} satisfying the curvature conditions $P \cdot C=0, Z \cdot C=L_{C} Q(g, C), P \cdot Z-Z \cdot P=0$, and $P \cdot Z+Z \cdot P=0$, where Z is the concircular tensor defined by (1), P is the $v-$ Weyl projective tensor, and C is the Weyl conformal curvature tensor of M^{n}.

2. PRELIMINARIES

A differentiable manifold of dimension n is called an $L P$-Sasakian manifold $\left[{ }^{1,2}\right]$ if it admits a $(1,1)$-tensor field ϕ, a contravariant vector field ξ, a covariant vector field η, and a Lorentzian metric g which satisfy

$$
\begin{gather*}
\eta(\xi)=-1 \tag{3}\\
\phi^{2}=I+\eta \otimes \xi \tag{4}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y), \tag{5}\\
g(X, \xi)=\eta(X), \quad \nabla_{X} \xi=\phi X, \tag{6}\\
\Phi(X, Y)=g(X, \phi Y)=g(\phi X, Y)=\Phi(Y, X), \tag{7}\\
\left(\nabla_{X} \Phi\right)(Y, W)=g\left(Y,\left(\nabla_{X} \Phi\right) W\right)=\left(\nabla_{X} \Phi\right)(W, Y), \tag{8}
\end{gather*}
$$

where ∇ is the covariant differentiation with respect to g. The Lorentzian metric g makes a timelike unit vector field, that is, $g(\xi, \xi)=-1$. The manifold M^{n} equipped with a Lorentzian almost paracontact structure (ϕ, ξ, η, g) is said to be a Lorentzian almost paracontact manifold (see [$\left[^{1,3}\right]$).

If we replace in (3) and (4) ξ by $-\xi$, then the triple (ϕ, ξ, η) is an almost paracontact structure on M^{n} defined by Sato [${ }^{7}$]. The Lorentzian metric given by (6) stands analogous to the almost paracontact Riemannian metric for any almost paracontact manifold (see $[7,8]$).

A Lorentzian almost paracontact manifold M^{n} equipped with the structure (ϕ, ξ, η, g) is called a Lorentzian paracontact manifold (see $\left.\left[{ }^{1}\right]\right)$ if

$$
\Phi(X, Y)=\frac{1}{2}\left(\left(\nabla_{X} \eta\right) Y+\left(\nabla_{Y} \eta\right) X\right)
$$

A Lorentzian almost paracontact manifold M^{n}, equipped with the structure (ϕ, ξ, η, g), is called an $L P$-Sasakian manifold (see $\left[^{1}\right]$) if

$$
\left(\nabla_{X} \phi\right) Y=g(\phi X, \phi Y) \xi+\eta(Y) \phi^{2} X
$$

In an $L P$-Sasakian manifold the 1 -form η is closed. In $\left[{ }^{1}\right]$ it is also proved that if an n-dimensional Lorentzian manifold $\left(M^{n}, g\right)$ admits a timelike unit vector field ξ such that the 1 -form η associated to ξ is closed and satisfies

$$
\left(\nabla_{X} \nabla_{Y} \eta\right) W=g(X, Y) \eta(W)+g(X, W) \eta(Y)+2 \eta(X) \eta(Y) \eta(W)
$$

then M^{n} admits an $L P$-Sasakian structure.
Further, on such an $L P$-Sasakian manifold M^{n} with the structure (ϕ, ξ, η, g) the following relations hold:

$$
\begin{gather*}
g(R(X, Y) W, \xi)=\eta(R(X, Y) W)=g(Y, W) \eta(X)-g(X, W) \eta(Y) \tag{9}\\
R(\xi, X) Y=g(X, Y) \xi-\eta(Y) X \tag{10}\\
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{11}\\
R(\xi, X) \xi=X+\eta(X) \xi \tag{12}\\
S(X, \xi)=(n-1) \eta(X) \tag{13}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \eta(X) \eta(Y) \tag{14}
\end{gather*}
$$

for any vector fields X, Y (see $\left.{ }^{1,2}\right]$), where S is the Ricci curvature and Q is the Ricci operator given by $S(X, Y)=g(Q X, Y)$.

An $L P$-Sasakian manifold M^{n} is said to be η-Einstein if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{15}
\end{equation*}
$$

for any vector fields X, Y, where a, b are functions on M^{n} (see $\left[{ }^{9,10}\right]$).
Next we define endomorphisms $R(X, Y)$ and $X \wedge_{A} Y$ of $\chi(M)$ by

$$
\begin{gather*}
R(X, Y) W=\nabla_{X} \nabla_{Y} W-\nabla_{Y} \nabla_{X} W-\nabla_{[X, Y]} W \tag{16}\\
\left(X \wedge_{A} Y\right) W=A(Y, W) X-A(X, W) Y \tag{17}
\end{gather*}
$$

respectively, where $X, Y, W \in \chi(M)$ and A is the symmetric (0,2)-tensor.

For a $(0, k)$-tensor field $T, k \geq 1$, on (M, g) we define $P \cdot T, Z \cdot T$, and $Q(g, T)$ by

$$
\begin{align*}
(P(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right)= & -T\left(P(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -T\left(X_{1}, P(X, Y) X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, X_{2}, \ldots, P(X, Y) X_{k}\right) \tag{18}
\end{align*}
$$

$$
\begin{align*}
(Z(X, Y) \cdot T)\left(X_{1}, \ldots, X_{k}\right)= & -T\left(Z(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -T\left(X_{1}, Z(X, Y) X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, X_{2}, \ldots, Z(X, Y) X_{k}\right) \tag{19}
\end{align*}
$$

$$
\begin{align*}
Q(g, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)= & -T\left((X \Lambda Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
& -T\left(X_{1},(X \Lambda Y) X_{2}, \ldots, X_{k}\right) \\
& -\ldots-T\left(X_{1}, X_{2}, \ldots,(X \Lambda Y) X_{k}\right) \tag{20}
\end{align*}
$$

respectively $\left[{ }^{11}\right]$.
By definition the Weyl conformal curvature tensor C is given by

$$
\begin{align*}
C(X, Y) Z= & R(X, Y) Z-\frac{1}{n-2}\left[\begin{array}{c}
g(Y, Z) Q X-g(X, Z) Q Y \\
+S(Y, Z) X-S(X, Z) Y
\end{array}\right] \\
& +\frac{\tau}{(n-1)(n-2)}[g(Y, Z) X-g(X, Z) Y] \tag{21}
\end{align*}
$$

where Q denotes the Ricci operator, i.e., $S(X, Y)=g(Q X, Y)$ and τ is scalar curvature $\left[{ }^{9}\right]$. The Weyl conformal curvature tensor C is defined by $C(X, Y, Z, W)$ $=g(C(X, Y) Z, W)$. If $C=0, n \geq 4$, then M is called conformally flat.

3. MAIN RESULTS

In the present section we consider the $L P$-Sasakian manifold M^{n} satisfying the curvature conditions $P \cdot C=0, Z \cdot C=L_{C} Q(g, C), P \cdot Z-Z \cdot P=0$, and $P \cdot Z+Z \cdot P=0$.

First we give the following proposition.
Proposition 1. Let M be an n-dimensional $(n>3) L P$-Sasakian manifold. If the condition $P \cdot C=0$ holds on M, then

$$
\begin{aligned}
S^{2}(X, U)= & {\left[\frac{\tau}{n-1}-(n-1)^{2}-1\right] S(X, U) } \\
& +(n-1)[\tau-(n-1)] g(X, U) \\
& +n[\tau-n(n-1)] \eta(X) \eta(U)
\end{aligned}
$$

is satisfied on M, where $S^{2}(X, U)=S(Q X, U)$.

Proof. Assume that M is an n-dimensional, $n>3, L P$-Sasakian manifold satisfying the condition $P \cdot C=0$. From (18) we have

$$
\begin{align*}
(P(V, X) \cdot C)(Y, U) W= & P(V, X) C(Y, U) W \\
& -C(P(V, X) Y, U) W-C(Y, P(V, X) U) W \\
& -C(Y, U) P(V, X) W=0 \tag{22}
\end{align*}
$$

where $X, Y, U, V, W \in \chi(M)$. Taking $V=\xi$ in (22), we have

$$
\begin{align*}
(P(\xi, X) \cdot C)(Y, U) W= & P(\xi, X) C(Y, U) W \\
& -C(P(\xi, X) Y, U) W-C(Y, P(\xi, X) U) W \\
& -C(Y, U) P(\xi, X) W=0 \tag{23}
\end{align*}
$$

Furthermore, substituting (2), (9), (13), (21) into (23) and multiplying with ξ, we get

$$
\begin{align*}
& -g(X, C(Y, U) W)-n \eta(C(Y, U) W) \eta(X)-g(X, Y) \eta(C(\xi, U) W) \\
& +n \eta(Y) \eta(C(X, U) W)-g(X, U) \eta(C(Y, \xi) W) \\
& +n \eta(U) \eta(C(Y, X) W)+n \eta(W) \eta(C(Y, U) X) \\
& +\frac{1}{n-1}\{S(X, C(Y, U) W)+S(X, Y) \eta(C(\xi, U) W) \\
& +S(X, U) \eta(C(Y, \xi) W)\}=0 \tag{24}
\end{align*}
$$

Thus, replacing W with ξ in (24), we have

$$
\begin{equation*}
-g(X, C(Y, U) \xi)-n \eta(C(Y, U) X)+\frac{1}{n-1} S(X, C(Y, U) \xi)=0 \tag{25}
\end{equation*}
$$

Again, taking $Y=\xi$ in (25) and after some calculations, since $n>3$, we get

$$
\begin{aligned}
S^{2}(X, U)= & {\left[\frac{\tau}{n-1}-(n-1)^{2}-1\right] S(X, U) } \\
& +(n-1)[\tau-(n-1)] g(X, U) \\
& +n[\tau-n(n-1)] \eta(X) \eta(U)
\end{aligned}
$$

Our theorem is thus proved.
Theorem 2. Let M be an n-dimensional $(n>3) L P$-Sasakian manifold. If the condition $Z \cdot C=L_{C} Q(g, C)$ holds on M, then either M is conformally flat or $L_{C}=\frac{\tau}{n(n-1)}-1$.

Proof. Let M^{n} be an $L P$-Sasakian manifold. So we have

$$
(Z(V, X) \cdot C)(Y, U) W=L_{C} Q(g, C)(Y, U, W ; V, X)
$$

Then from (19) and (20) we can write

$$
\begin{align*}
Z(V, X) C(Y, U) W & -C(Z(V, X) Y, U) W-C(Y, Z(V, X) U) W \\
& -C(Y, U) Z(V, X) W \\
= & L_{C}[(V \wedge X) C(Y, U) W-C((V \wedge X) Y, U) W \\
& -C(Y,(V \wedge X) U) W-C(Y, U)(V \wedge X) W] \tag{26}
\end{align*}
$$

Therefore, replacing V with ξ in (26), we have

$$
\begin{align*}
Z(\xi, X) C(Y, U) W & -C(Z(\xi, X) Y, U) W-C(Y, Z(\xi, X) U) W \\
& -C(Y, U) Z(\xi, X) W \\
= & L_{C}[(\xi \wedge X) C(Y, U) W-C((\xi \wedge X) Y, U) W \\
& -C(Y,(\xi \wedge X) U) W-C(Y, U)(\xi \wedge X) W] \tag{27}
\end{align*}
$$

Using (20), (9) and taking the inner product of (27) with ξ, we get

$$
\begin{align*}
{[1} & \left.-\frac{\tau}{n(n-1)}-L_{C}\right][-g(X, C(Y, U) W)-\eta(C(Y, U) W) \eta(X) \\
& -g(X, Y) \eta(C(\xi, U) W)+\eta(Y) \eta(C(X, U) W) \\
& -g(X, U) \eta(C(Y, \xi) W)+\eta(U) \eta(C(Y, X) W)+\eta(W) \eta(C(Y, U) X)]=0 \tag{28}
\end{align*}
$$

Putting $X=Y$ in (28), we have

$$
\begin{align*}
& {\left[1-\frac{\tau}{n(n-1)}-L_{C}\right][-g(Y, C(Y, U) W)+\eta(W) \eta(C(Y, U) Y)} \\
& \quad-g(Y, Y) \eta(C(\xi, U) W)-g(Y, U) \eta(C(Y, \xi) W)]=0 \tag{29}
\end{align*}
$$

A contraction of (29) with respect to Y gives us

$$
\begin{equation*}
\left[1-\frac{\tau}{n(n-1)}-L_{C}\right] \eta(C(\xi, U) W)=0 \tag{30}
\end{equation*}
$$

If $L_{C} \neq 1-\frac{\tau}{n(n-1)}$, then Eq. (30) is reduced to

$$
\begin{equation*}
\eta(C(\xi, U) W)=0 \tag{31}
\end{equation*}
$$

which gives

$$
\begin{equation*}
S(U, W)=\left(\frac{\tau}{(n-1)}-1\right) g(U, W)+\left(\frac{\tau}{(n-1)}-n\right) \eta(U) \eta(W) \tag{32}
\end{equation*}
$$

Therefore, M is a η-Einstein manifold. So, using (31) and (32), we have Eq. (28) in the form

$$
C(Y, U, W, X)=0
$$

which means that M is conformally flat.
If $L_{C} \neq 0$ and $\eta(C(\xi, U) W) \neq 0$, then $1-\frac{\tau}{n(n-1)}-L_{C}=0$, which gives $L_{C}=1-\frac{\tau}{n(n-1)}$. This completes the proof of the theorem.

Corollary 3. Every n-dimensional $(n>3)$ nonconformally flat LP-Sasakian manifold satisfies $Z \cdot C=\left(1-\frac{\tau}{n(n-1)}\right) Q(g, C)$.

Theorem 4. Let M be an n-dimensional $(n>3) L P$-Sasakian manifold. M satisfies the condition

$$
P \cdot Z-Z \cdot P=0
$$

if and only if M is a η-Einstein manifold.
Proof. Let M satisfy the condition $P \cdot Z-Z \cdot P=0$. Then we can write

$$
\begin{align*}
P(V, X) & \cdot Z(Y, U) W-Z(V, X) \cdot P(Y, U) W \\
= & \frac{1}{n-1}\left[R(V, X) R_{1}(Y, U) W-R_{1}(V, X) R(Y, U) W\right] \\
& +\frac{\tau}{n(n-1)^{2}}\left[R_{1}(V, X) R_{0}(Y, U) W-R_{0}(V, X) R_{1}(Y, U) W\right] \\
& +\frac{\tau}{n(n-1)}\left[R_{0}(V, X) R(Y, U) W-R(V, X) R_{0}(Y, U) W\right]=0 \tag{33}
\end{align*}
$$

Therefore, replacing V with ξ in (33), we have

$$
\begin{align*}
P(\xi, X) \cdot & Z(Y, U) W-Z(\xi, X) \cdot P(Y, U) W \\
= & \frac{1}{n-1}\left[R(\xi, X) R_{1}(Y, U) W-R_{1}(\xi, X) R(Y, U) W\right] \\
& +\frac{\tau}{n(n-1)^{2}}\left[R_{1}(\xi, X) R_{0}(Y, U) W-R_{0}(\xi, X) R_{1}(Y, U) W\right] \\
& +\frac{\tau}{n(n-1)}\left[R_{0}(\xi, X) R(Y, U) W-R(\xi, X) R_{0}(Y, U) W\right]=0 \tag{34}
\end{align*}
$$

Using (10), (13), we get

$$
\begin{align*}
\frac{1}{n-1} & {[S(U, W) g(X, Y) \xi-S(U, W) \eta(Y) X-g(X, U) S(Y, W) \xi} \\
& +S(Y, W) \eta(U) X-S(X, R(Y, U) W) \xi+(n-1) g(U, W) \eta(Y) X \\
& -(n-1) g(Y, W) \eta(U) X] \\
& +\frac{\tau}{n(n-1)^{2}}[g(U, W) g(X, Y) \xi-g(U, W) \eta(Y) X-g(Y, W) g(X, U) \xi \\
& +g(Y, W) \eta(U) X-S(U, W) g(X, Y) \xi+S(U, W) \eta(Y) X \\
& +S(Y, W) g(X, U) \xi-S(Y, W) \eta(U) X] \\
& +\frac{\tau}{n(n-1)}[g(X, R(Y, U) W) \xi+g(Y, W) \eta(U) X-g(U, W) g(X, Y) \xi \\
& +g(Y, W) g(X, U) \xi-g(Y, W) \eta(U) X]=0 \tag{35}
\end{align*}
$$

Again, taking $U=\xi$ in (35), we get

$$
\begin{align*}
& \frac{1}{n-1}[(n-1) g(X, Y) \eta(W) \xi-S(Y, W) \eta(X) \xi-S(Y, W) X \\
& \quad+(n-1) g(Y, W) \eta(X) \xi-S(X, Y) \eta(W) \xi+(n-1) g(Y, W) X] \\
& \quad+\frac{\tau}{n(n-1)^{2}}[g(X, Y) \eta(W) \xi-\eta(W) \eta(Y) X-g(Y, W) \eta(X) \xi-g(Y, W) X \\
& \quad-(n-1) g(X, Y) \eta(W) \xi+(n-1) \eta(W) \eta(Y) X \\
& \quad-S(Y, W) \eta(X) \xi+S(Y, W) X]=0 \tag{36}
\end{align*}
$$

Taking the inner product of (36) with ξ, we find

$$
\begin{align*}
\frac{1}{n-1} & {[S(X, Y) \eta(W)-(n-1) g(X, Y) \eta(W)] } \\
& +\frac{\tau(n-2)}{n(n-1)^{2}}[g(X, Y) \eta(W)+\eta(X) \eta(Y) \eta(W)]=0 \tag{37}
\end{align*}
$$

Again, taking $W=\xi$ and using (3) in (37), we get

$$
\begin{align*}
S(X, Y)= & {\left[(n-1)-\frac{(n-2)}{n(n-1)} \tau\right] g(X, Y) } \\
& -\left[\frac{(n-2)}{n(n-1)} \tau\right] \eta(X) \eta(Y) \tag{38}
\end{align*}
$$

So, M is a η-Einstein manifold.
Conversely, if M^{n} is a η-Einstein manifold, then it is easy to show that $P \cdot Z-Z \cdot P=0$. Our theorem is thus proved.

Theorem 5. Let M be an n-dimensional $(n>3) L P$-Sasakian manifold. M satisfies the condition

$$
P \cdot Z+Z \cdot P=0
$$

if and only if M is an Einstein manifold.
Proof. Let M satisfy the condition $P \cdot Z+Z \cdot P=0$. Then, from (33) and (34), we can write

$$
\begin{align*}
& 2 R(\xi, X) R(Y, U) W \\
& \quad-\frac{1}{n-1}\left[R(\xi, X) R_{1}(Y, U) W+R_{1}(\xi, X) R(Y, U) W\right] \\
& \quad+\frac{\tau}{n(n-1)^{2}}\left[R_{1}(\xi, X) R_{0}(Y, U) W+R_{0}(\xi, X) R_{1}(Y, U) W\right] \\
& \quad-\frac{\tau}{n(n-1)}\left[R_{0}(\xi, X) R(Y, U) W+R(\xi, X) R_{0}(Y, U) W\right]=0 \tag{39}
\end{align*}
$$

Using (6), (10), and (13) in (39), we have

$$
\begin{align*}
2[g(& X, R(Y, U) W) \xi-g(U, W) \eta(Y) X+g(Y, W) \eta(U) X] \\
& -\frac{1}{n-1}[S(U, W) g(X, Y) \xi-S(U, W) \eta(Y) X-S(Y, W) g(X, U) \xi \\
& +S(Y, W) \eta(U) X+S(X, R(Y, U) W) \xi-(n-1) g(U, W) \eta(Y) X \\
& +(n-1) g(Y, W) \eta(U) X] \\
& +\frac{\tau}{n(n-1)^{2}}[g(U, W) S(X, Y) \xi-(n-1) g(U, W) \eta(Y) X \\
& -g(Y, W) S(X, U) \xi+(n-1) g(Y, W) \eta(U) X+S(U, W) g(X, Y) \xi \\
& -S(U, W) \eta(Y) X-S(Y, W) g(X, U) \xi+S(Y, W) \eta(U) X] \\
& -\frac{\tau}{n(n-1)}[g(X, R(Y, U) W) \xi-2 g(U, W) \eta(Y) X+2 g(Y, W) \eta(U) X \\
& +g(U, W) g(X, Y) \xi-g(Y, W) g(X, U) \xi]=0 \tag{40}
\end{align*}
$$

Replacing Y with ξ and using (3) in (40), we have

$$
\begin{align*}
& 2[g(X, R(\xi, U) W) \xi+g(U, W) X+\eta(W) \eta(U) X] \\
&-\frac{1}{n-1}[S(U, W) \eta(X) \xi+S(U, W) X-(n-1) g(X, U) \eta(W) \xi \\
&+2(n-1) \eta(W) \eta(U) X+S(X, R(\xi, U) W) \xi+(n-1) g(U, W) X] \\
& \quad+\frac{\tau}{n(n-1)^{2}}[(n-1) g(U, W) \eta(X) \xi+(n-1) g(U, W) X \\
& \quad-S(X, U) \eta(W) \xi+(n-1) \eta(W) \eta(U) X+S(U, W) \eta(X) \xi \\
&+S(U, W) X-(n-1) g(X, U) \eta(W) \xi+(n-1) \eta(W) \eta(U) X] \\
&-\frac{\tau}{n(n-1)}[g(X, R(\xi, U) W) \xi+2 g(U, W) X+2 \eta(W) \eta(U) X \\
&+g(U, W) \eta(X) \xi-g(X, U) \eta(W) \xi]=0 . \tag{41}
\end{align*}
$$

Taking the inner product of (41) with ξ and using (7), (10), we get

$$
\begin{align*}
{[2} & \left.-\frac{2 \tau}{n(n-1)}\right][g(X, U) \eta(W)+\eta(X) \eta(U) \eta(W)] \\
& +\left[\frac{\tau}{n(n-1)^{2}}-\frac{1}{n-1}\right][(n-1) g(X, U) \eta(W)+2(n-1) \eta(X) \eta(U) \eta(W) \\
& +S(X, U) \eta(W)]=0 \tag{42}
\end{align*}
$$

Again, taking $W=\xi$ and using (3) in (42), we get

$$
\begin{align*}
& {\left[\frac{2 \tau}{n(n-1)}-2\right][g(X, U)+\eta(X) \eta(U)]} \\
& \quad-\left[\frac{\tau}{n(n-1)^{2}}-\frac{1}{n-1}\right][(n-1) g(X, U) \\
& \quad+2(n-1) \eta(X) \eta(U)+S(X, U)]=0 \tag{43}
\end{align*}
$$

Thus, from (43), we have

$$
S(X, U)=(n-1) g(X, U)
$$

So, M^{n} is an Einstein manifold.
Conversely, if M^{n} is an Einstein manifold, then it is easy to show that $P \cdot Z+Z \cdot P=0$. Our theorem is thus proved.

ACKNOWLEDGEMENT

This study was supported by the Dumlupınar University research foundation (project No. 2004-9).

REFERENCES

1. Matsumoto, K. On Lorentzian paracontact manifolds. Bull. of Yamagata Univ. Nat. Sci., 1989, 12, 151-156.
2. Mihai, I. and Rosca, R. On Lorentzian P-Sasakian Manifolds, Classical Analysis. World Scientific, Singapore, 1992, 155-169.
3. Matsumoto, K. and Mihai, I. On a certain transformation in a Lorentzian para-Sasakian manifold. Tensor, N. S., 1988, 47, 189-197.
4. Tripathi, M. M. and De, U. C. Lorentzian almost paracontact manifolds and their submanifolds. J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 2001, 8, 101-105.
5. Blair, D. E., Kim, J. S. and Tripathi, M. M. On the concircular curvature tensor of a contact metric manifold. J. Korean Math. Soc., 2005, 42, 883-892.
6. Tigaeru, C. v-projective symmetries of fibered manifolds. Arch. Math., 1998, 34, 347-352.
7. Sato, I. On a structure similar to almost contact structures. Tensor, N. S., 1976, 30, 219224.
8. Sato, I. On a structure similar to almost contact structures II. Tensor, N. S., 1977, 31, 199-205.
9. Yano, K. and Kon, M. Structures on Manifolds. Series in Pure Mathematics, Vol. 3, 1984. World Scientific, Singapore.
10. Blair, D. E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics, Vol. 509, 1976, Springer-Verlag, Berlin.
11. Deszcz, R. On pseudosymmetric spaces. Bull. Soc. Math. Belg., 1990, 49, 134-145.

Ühest Lorentzi para-Sasaki muutkondade klassist

Cengizhan Murathan, Ahmet Yıldız, Kadri Arslan ja Uday Chand De
On käsitletud Lorentzi para-Sasaki muutkondi, mille puhul $P \cdot C=0, Z \cdot C=$ $L_{C} Q(g, C), P \cdot Z-Z \cdot P=0$ või $P \cdot Z+Z \cdot P=0$, kus C on Weyli konformse kõveruse tensor, P on v-Weyli projektiivne tensor ja Z on kontsirkulaartensor.

